Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., & Tanighchi, M. )2003(. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3–33.
Duarte, T.K., Hemond, H.F., Frankel, D., & Frankel, S. (2006). Assessment of submarine groundwater discharge by handheld aerial infrared imagery: case study of Kaloko fishpond and bay, Hawai’i. Limnology and Oceanography: Methods 4: 227–236.
Farzin, M., Samani, A.N., Feiznia, S., & Kazemi, gh. (2017). Recognizing the probable limit of presence of Persian gulf submarine springs on the shores of Bushehr province using the heat data of landsat 8, remote sensing and geograohical information system in natural resources, eighth year, number four.
Lewandowski, J., Meinikmann, K., Ruhtz, T., Pöschke, F., & Kirillin, G. )2013(. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation. Remote Sensing of Environment, 138: 119–125.
McBride, M. S., & H. O., Pfannkuch. (1975). The distribution of seepage within lakebed, J Res. U. S. Geol. Surv., 3, 505–512.
Schuetz, T., & Weiler, M. (2011). Quantification of localised groundwater inflow into streams using ground-based infrared thermography. Hydrology and Land Surface Studies 38(3): 1-5.
Shaban, A., Khawlie, M., Abdallah, C., & Faour, G. (2005). Geologic controls of submarine groundwater discharge: application of remote sensing to north Lebanon. Environmental Geology 47(4): 512-522.
Thomas, A., Byrne, D., & Weatherbee, R. (2002). Coastal sea surface temperature variability from Landsat infrared data. Remote Sensing of Environment 81: 262–272.
Wilson, J., & Rocha, C. (2016). A combined remote sensing and multi-tracer approach for localizing and assessing groundwater-lake interactions. International Journal of Applied Earth Observation and Geoinformation 44: 195-204.