پژوهشی
Hydrogeomorphology
Alireza Ildoromi; nasrin hassanzadeh; fariba hedayetzadeh
Abstract
Sustainable quality of rivers water has become one of the main concerns in developing countries, so monitoring the water quality of these resources for various uses is essential to formulate a public health and environmental management policy. The purpose of this study is to evaluate the water quality ...
Read More
Sustainable quality of rivers water has become one of the main concerns in developing countries, so monitoring the water quality of these resources for various uses is essential to formulate a public health and environmental management policy. The purpose of this study is to evaluate the water quality of Karun and Dez river systems in Khuzestan province and to analyze the suitability of their water quality for drinking and agricultural purposes. To this end, various techniques, indicators and statistical analyzes are used to evaluate spatio-temporal changes in the interpretation of large and complex datasets of 12 water quality parameters collected from the Karun and Dez river basins over a period of 17 years (2003-2019).Evaluation of the trend of water quality changes in the study period also showed that according to WQI, the water quality of Karun and Dez rivers from 2003 to 2007 are in the category of "very poor"and "poor", and from 2008 to 2018 in the "unsuitable" and "very poor"category, respectively. Regarding irrigation parameters, the lack of a clear trend in their values can indicate the lack of effect of river water quality from natural factors and their obedience with human factors. Overall, this study highlights the importance of using water quality indicators that provide a simple interpretation of monitoring data to help improve water quality, because based on these indicators and PCA, it can be concluded that related human activities along the banks of the Karun and Dez rivers, especially in recent years, affect their water quality.
پژوهشی
Zahra Sharifi; Raoof Mostafazadeh; Abazar Esmali Ouri; Zeinab Hazbavi; Mohammad Golshan
Abstract
Daily flow data are a prerequisite for water resources management, but it is not possible to measure it in many upstream watersheds. In this study, different optimization algorithms have been used to evaluate the efficiency of the SIMHYD model. Therefore, the discharge data of Kouzetopraghi rive gauge ...
Read More
Daily flow data are a prerequisite for water resources management, but it is not possible to measure it in many upstream watersheds. In this study, different optimization algorithms have been used to evaluate the efficiency of the SIMHYD model. Therefore, the discharge data of Kouzetopraghi rive gauge station was selected as the study data (805 km2) located in Ardabil province. The daily data of rainfall, evapotranspiration of the meteorological stations in the study area were used to simulate the daily river flow data. Optimization methods including genetic algorithm, comprehensive competitive evolution, search pattern, multi-start search pattern, uniform random sampling, Rosenbrook, multi-start Rosenbrook optimization were evaluated based on statistical efficiency criteria. The mean value of discharge values by genetic algorithms, multi-year pattern search, uniform random sampling, multi-start Rosenbark, Rosenbork, comprehensive competitive evolution, search pattern were 0.031, 0.023, 0.085, 0.032, 0.024, 0.032, 0.031, respectively. The results showed that the change of optimization algorithms has a significant effect on the calibration accuracy of the model, so that the values of the Nash-Sutcliffe efficiency criteria for the employed algorithms were 0.42, 0.31, -8.55, 0.38, 0.56, 0.023, and 0.24, respectively. The Rosenbrook algorithm had higher accuracy in calibrating the SIMHYD hydrological model compared to other algorithms used. A part of the modeling error can be related to the inconsistency of precipitation and runoff data due to the multiplicity of stations.
پژوهشی
Geomorphology
sayyad Asghari Saraskanrood; abozar sadeghi; elham molanouro
Abstract
Snow-covered (SC) surfaces influence the land surface energy balance through albedo feedback, and also have a major impact on climate processes, human activities, and the hydrological cycle. Land surface temperature is one of the main elements in knowing the climate of a region, whose changes and fluctuations ...
Read More
Snow-covered (SC) surfaces influence the land surface energy balance through albedo feedback, and also have a major impact on climate processes, human activities, and the hydrological cycle. Land surface temperature is one of the main elements in knowing the climate of a region, whose changes and fluctuations in different altitude classes are very useful for hydrological studies. The purpose of this study is to evaluate and investigate the relationship between ground surface temperature and snow cover level with the topographical component of height in Urmia lake basin. In this research, due to the ease of access to remote sensing data and the appropriate temporal and spatial separation of Terra satellite images, monthly, seasonal and annual MODIS sensor images have been used in the period of 1379-1399. The obtained results show that there is an inverse relationship between LST and SC, also the examination of SC maps and elevation classes shows that there is a direct relationship between these two variables, in fact, with the increase in altitude, the stability of snow in the region increases so that at altitudes higher than 3000 m, the amount of snow cover is more than 98% compared to the region. The changes in the temperature of the earth's surface at different altitudes are the reverse of the changes in the snow cover, so at altitudes less than 2000 meters, the annual average temperature is 21-35 Celsius, but at altitudes higher than 3500 meters, the average temperature is about 7-13 Degree.
پژوهشی
Hydrogeomorphology
Mohammad Mehdi Hosseinzadeh; Ali Reza Salehi Milani; Fateme Rezaian Zarandini
Abstract
Floods, as natural and unexpected events, have occurred frequently in recent decades. To reduce the damages caused by floods and flood management, it is mandatory to assess the possibility of danger and prepare maps of possible danger zones. In recent decades, many destructive floods have occurred in ...
Read More
Floods, as natural and unexpected events, have occurred frequently in recent decades. To reduce the damages caused by floods and flood management, it is mandatory to assess the possibility of danger and prepare maps of possible danger zones. In recent decades, many destructive floods have occurred in the Nakarod catchment. Because of this, to manage floods, reduce damages, and properly use water resources, the flood potential of the sub-basins of the Nakarod catchment has been studied. Neka River is 176 km long, and it is one of the important rivers of Mazandaran province and one of the catchments of the Caspian Sea. In this research, to prepare a map of the sensitivity of the sub-basins to the flood risk of the basin, 11 influencing parameters have been used, which includes elevation, slope, distance from drainage network, drainage density, flow accumulation, rainfall, land-use, geology, stream power index, topographic wetness index and curvature of the topography. The layers were weighted using the Analytical Hierarchy Process (AHP); and eventually, by using the weighted linear combination method in ArcGIS software, the standardized layers were multiplied by the corresponding weight, and then the results of all the variables were added and accumulated together, and the final sensitivity map was divided into five classes. The results of the research indicate that flood sensitivity is different in the sub-basins of the Neka RiverAmong the effective environmental factors in flooding, the elevation and stream density were the most influential factors in the flood risk of the Neka catchment.
پژوهشی
Hashem Rostamzadeh; Mir Kamel Hosseini; Saeed Jahanbakhsh asl; Mohammad Omidfar
Abstract
The aim of this research is to investigate the accuracy of the heavy rainfall data (rainfalls of 25 mm or more) of Tabriz weather radar in a period of 8 years (2014-2021) and compare them with synoptic station data in basin. To compare and evaluate between meteorological stations and radar data, statistics ...
Read More
The aim of this research is to investigate the accuracy of the heavy rainfall data (rainfalls of 25 mm or more) of Tabriz weather radar in a period of 8 years (2014-2021) and compare them with synoptic station data in basin. To compare and evaluate between meteorological stations and radar data, statistics such as, correlation coefficient (R) and root mean square error (RMSE) were used. The comparison of the maps obtained from Doppler radar and rain gauge stations showed that the spatial distribution of precipitation from the two databases was not the same and the low and high rainfall areas did not match each other, so that the correlation coefficient between the radar and observed precipitation was 0.25. Also, the results of Kolmogorov-Smirnov test showed that considering that the obtained p-value (0.000) is smaller than the error value of the test (0.05), then the difference between radar precipitation data and ground observations is significant. In fact, the rainfall values recorded in the ground and radar stations do not provide a single result, and none of the statistical populations have a uniform distribution, therefore the radar rainfall data cannot be used instead of the rainfall data of the stations.
علمی
hydrogeology
Zahra Sedghi; Ata Allah Nadiri; Sina Sadeghfam; Somayeh Asadi; Frank Tsai
Abstract
Nitrate is one of the pollutants of drinking water sources in the Maku-Bazargan-Poldasht region as a result of human and agricultural activity. Investigations show that the maximum nitrate content in the water resources of the Maku-Bazargan-Poldasht region has increased from 33 mg/liter to 167 mg/liter ...
Read More
Nitrate is one of the pollutants of drinking water sources in the Maku-Bazargan-Poldasht region as a result of human and agricultural activity. Investigations show that the maximum nitrate content in the water resources of the Maku-Bazargan-Poldasht region has increased from 33 mg/liter to 167 mg/liter at the regional level since 2000, or 15 years ago. Is. This area's drinking water is sourced from a variety of poorly maintained wells, springs, aqueducts, and surface water bodies. The results of this analysis, which collected samples from a number of water sources, show the area's high level of water source pollution. This study is the first to assess the carcinogenic risk of nitrate, which is present at high amounts in the study area. This study is the first to assess whether nitrate, nitrite, and ammonium are carcinogenic due to the high amounts of nitrogen compounds in the study area. The goal of the current study was to evaluate the levels of nitrate, nitrite, and ammonium in the drinking water sources of the Maku-Bazargan-Poldasht region and investigate any potential health issues related to nitrate and nitrite. This was done in compliance with USEPA regulations. An effort was made in this study to present a nitrogen compound risk map that is not carcinogenic, and if such a risk exists, future research by scientists should focus on it and determine the best course of action.
پژوهشی
hydrogeology
babak shahinejad; Hojjat Allah Yonesi; maryam mirbeyksabzevari
Abstract
One of the common methods of controlling the side erosion and rivers training is the use of spur dikes. It is important to consider several different and conflicting objectives in river engineering studies simultaneously. For this purpose, the optimum design of the dimensions of constructed spur dikes ...
Read More
One of the common methods of controlling the side erosion and rivers training is the use of spur dikes. It is important to consider several different and conflicting objectives in river engineering studies simultaneously. For this purpose, the optimum design of the dimensions of constructed spur dikes in Zanjanrood was considered with the aim of minimizing the cost and maximizing the sediment discharge. In the model, a combination of morphological model, design and optimization model of multi-objective harmony search algorithm were used and to evaluate the cross-section stability were used hypothetical theories. Calibration and validation of the model were performed by Zanjanrood data with Van Rijn sediment equation and Gill scouring equation. Sensitivity analysis of the model were performed for the parameters of discharge, slope and initial width of the river. By comparing different scenarios obtained from the Pareto front, better answers were provided than the plan implemented in Zanjanrood and the studies of other researchers. Finally, one of the points of the Pareto front must be selected for construction and execution. Choosing the right number depends on the designer's opinion and the existing priorities. in one of scenario that chosen as the optimal design, it has the lowest Euclidean distance compared to other scenarios with the ideal point. This scenario offers 244.58% lower cost and 25.48% more sediment discharge than Zanjanrood plan.
پژوهشی
hydrogeology
amirsaeed Hoseini; saeid Hakimi Asiabar; Mojgan Salavati
Abstract
Abstract The goal of this study was to investigate the relationship between vegetation and soil erosion and changes to the hydro-geochemical properties of water. Soil erosion is closely related to the type of vegetation and land use, and can change water quality in a region. For this, the present study ...
Read More
Abstract The goal of this study was to investigate the relationship between vegetation and soil erosion and changes to the hydro-geochemical properties of water. Soil erosion is closely related to the type of vegetation and land use, and can change water quality in a region. For this, the present study collected and analyzed 15 water samples from the permanent waterways of Pirbadush and Gashun of the Qolyan River in the Qalikuh region of Lorestan, Iran. According to studies, from higher parts of the highlands of the region down towards downstream areas, water quality is reduced with the reduction of vegetation and increase of soil erosion and progressive Quaternary sediments, and with the entry of more cations and anions from sediments to water, and increased electrical conductivity, the total dissolved solids and turbidity. Thus, greater levels of vegetation in the highlands of this region increase soil permeability and reduce soil erosion. In this region, the reduced vegetation depends on the type of bedrock, and in some areas excessive grazing, in addition to altitude changes, thus increasing pollutants such as nitrates. Increased nitrates in the regional water depend on anthropogenic (livestock grazing) and geo-genic (expanded oil shales and the erosion of Quaternary deposits) factors. As a consequence, the regional water quality is more influenced by environmental and geo-genic factors, with anthropogenic factors less contributing to it.