-Amani, M., Parsian, S., MirMazloumi, S.M. and O, Aieneh., (2016), Two newsoilmoisture indices based on the NIR-red triangle space of Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf, No. 50, PP. 176–186.
-Babaeian, E., Homaee, M., Montzka, C., Vereecken, H., Norouzi, A.A., and M.T, van Genuchten, (2016), Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling, Remote Sens, Environ, No.187, PP. 218–229.
-Carlson, T.N., (2007), An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery, Sensors, No. 7, PP. 1612-1629.
-Carlson, T.N., (2013), Triangle models and misconceptions, Int. J. Remote. Sens, Appl, No. 3, PP. 155-158.
-Carlson, T.N., Gillies, R.R. and E.M, Perry., (1994), A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, Remote Sens, Rev. Vol.9 ,No(1–2), PP. 161–173.
-Feng, H., Chen, C., Dong, H., Wang, J. and Q. Meng., (2013), Modified shortwave infrared perpendicular water stress index: a farmland water stress monitoring method, J. Appl. Meteorol. Climatol, No. 52 Vol. 9, PP. 2024–2032.
-Gates, D.M., Keegan, H.J., Schleter, J.C. and V.R. Weidner., (1965) Spectral properties of plants, Applied optics, No. 4, Vol. 1, PP. 11-20.
-Ghulam, A., Li, Z.L., Qin, Q., Tong, Q., Wang, J., Kasimu, A. and L. Zhu, (2007), A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index, Sci. China Ser. D Earth Sci, No. 50 (9), PP. 1359–1368.
-Hassan. Esfahani, L., Torres-Rua, A., Jensen, A. and M. McKee., (2015), Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks,Remote Sens, No. 7 Vol. 3, PP. 2627–2646.
-Kornelsen K.C., and P. Coulibaly, (2015), Reducing multiplicative bias of satellite soil moisture retrievals, Remote Sensing of Environment, No. 165, PP. 109-22.
-Latif, M.S., (2014), Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm-A Case Study of Ranchi District, International Journal of Engineering Development and Research, No. 2, Vol. 4, PP. 2840-2849.
-Leroux D.J., Kerr Y.H., Al Bitar A., Bindlish R., Jackson T.J. and B. Berthelot., (2014), Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S., IEEE Transactions on Geoscience and Remote Sensing, No. 52, Vol. 3, PP.1562-1571.
-Mallick, K., Bhattacharya, B.K. and N.K. Patel., (2009), Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI, Agric. For. Meteorol, No. 149 (8), PP. 1327–1342.
-McNally A., Husak G.J., Brown M., Carroll M., Funk C., Yatheendradas S., Arsenault K., Peters-Lidard C., and J.P. Verdin., (2015), Calculating Crop Water Requirement Satisfaction in the West Africa Sahel with Remotely Sensed Soil Moisture, Journal of Hydrometeorology, No. 16, PP. 295-305.
-Mladenova, I.E., Jackson, T.J., Njoku, E., Bindlish, R., Chan, S., Cosh, M.H., Holmes, T.R.H., DeJeu, R.A.M., Jones, L., Kimball, J. and S. Paloscia, (2014), Remote monitoring of soil moisture using passive microwave-based techniques theoretical basis and overview of selected algorithms for AMSR-E, Remote Sens, Environ. No. 144, PP. 197–213.
-Moran, M.S., Clarke, T.R., Inoue, Y.and A.Vidal., (1994), Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens, Environ, No. 49(3), PP. 246–263.
-Nemani, R., Pierce, L., Running, S. and S. Goward., (1993), Developing satellite-derived estimates of surface moisture status, J. Appl. Meteorol, No. 32m Vol. 3, PP. 548–557.
-Njoku, E.G. and D. Entekhabi., (1996), Passive microwave remote sensing of soil moisture, J. Hydrol, No. 184, Vol. 1, PP. 101–129.
-Ochsner, T.E., Cosh, M.H., Cuenca, R.H., Dorigo, W.A., Draper, C.S., Hagimoto, Y., Kerr, Y.H.,Njoku, E.G., Small, E.E. and M. Zreda., (2013), State of the art in large-scale soil moisture monitoring, Soil Sci. Soc. Am. J. No. 77, Vol. 6, PP. 1888–1919.
-Pan, M., Sahoo a.K., Wood E.F., Al Bitar A., Leroux D., and Y.H. Kerr (2012), An Initial Assessment of SMOS Derived Soil Moisture over the Continental United States, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, No. 5, PP. 1448-1457.
-Pratt, D.A. and C.D. Ellyett., (1979), The thermal inertia approach to mapping of soil moisture and geology, Remote Sens, Environ, No. 8, Vol. 2, PP. 151–168.
-Qi, J., A. Chehbouni, A.R. Huete, Y.H. Kerr and S.A. Sorooshian, (1994), modified soil adjusted vegetation index, Remote Sens, Environ, No. 48, PP. 119-126.
-Rahimzadeh-Bajgiran, P., Berg, A.A., Champagne, C. and K. Omasa., (2013), Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies, ISPRS J. Photogramm, Remote Sens, No. 83, PP. 94–103.
-Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J. and O. Wendroth., (2008), Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review, Vadose Zone J. No. 7, Vol. 1, PP. 358–389.
-Sadeghi, M., Babaeian, E., Tuller, M. and S. B. Jones., (2017), The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Remote Sensing of Environment, No. 198, PP. 52-68.
-Sadeghi, M., Jones, S.B. and W.D. Philpot., (2015), A linear physically-based model for remote sensing of soil moisture using short wave infrared bands, Remote Sens, Environ, No. 164, PP. 66–76.
-Schalie R.v.d., Kerr Y.H., Wigneron J.P., Rodríguez-Fernández N.J., Al-Yaari A., and Jeu R.A.M.d.(2016), Global SMOS Soil Moisture Retrievals from the Land Parameter Retrieval Model, International Journal of Applied Earth Observation and Geoinformation, No. 45, PP. 125-134.
-Tian, J. and W.D. Philpot., (2015), Relationship between surface soil water content, evaporationrate, and water absorption band depths in SWIR reflectance spectra, Remote Sens, Environ. No. 169, PP. 280–289.
-Verstraeten, W.W., Veroustraete, F., van der Sande, C.J., Grootaers, I. and J. Feyen., (2006), Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests, Remote Sens, Environ. No. 101, Vol. 3, PP. 299–314.
-Wang, L. and J.J. Qu, (2009), Satellite remote sensing applications for surface soil moisture monitoring, a review. Front. Earth Sci, China, No. 3, Vol. 2, PP. 237–247.
-Weng Q, Lu D and J. Schubring, (2004), Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sensing Environ, No. 89, Vol. 4, PP. 467-483.
-Zeng J., Li Z., Chen Q., Bi H., Qiu J., and P. Zou, (2015), Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations, Remote Sensing of Environment, No. 163, PP. 91-110.
-Zhang, D. and G. Zhou., (2016), Estimation of soil moisture from optical and thermal remote sensing: a review, Sensors, No.16, Vol. 8, 1308.
-Zhang, N., Hong, Y., Qin, Q. and L. Liu., (2013), VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing, Int. J. Remote Sens, No. 34, Vol. 13, PP. 4585–4609