References
-Chen, W., Pourghasemi, H.R., Zhao, Z., (2016), A GIS-based comparative study ofDempster-Shafer, logistic regression and artificial neural network models for landslidesusceptibility mapping, Geocarto international, Vol.32, No. 4, PP.367-385
-Fathi, M.H., Khohdel K., Kandi ,Shoreh., A., Ashrafifeini, Z., Khaliji, M.A., (2015), The combination of spectral and spatial data in zoning oflandslide susceptibility (Case study: Sangorchay reservoir), Journal of Biodiversity and Environmental Sciences (JBES). Vol. 6, No. 2, PP.515-527.
-Havenith, H. B., Strom, A., Torgoev, I., Lamair, L., Ischuk, A., (2015), Tien Shan Geohazards database: Earthquakes and landslides, Journal of Geomorphology, Volume 249, PP.16-31.
-Polykretis, Ch., Chalkias, Ch., Ferentinou, M., (2017), Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area Bulletin of Engineering Geology and the Environment, Vol. 76, No. 137, PP.1–15.
-Pourghasemi, H.R., Gayen, A., Park, S,. Lee,C-W., Lee, S., (2018), Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithmsand , Sustainability,Vol.10, No. 3697, PP.1-23.
-Roy, B., (1991), The Outranking Approach and theFoundation of ELECTRE Methods, Theory and Decision, Vol. 31, No. 1, pp.155-183.
-Wang, Q., Li, W., Wu, Y., Pei, Y., & Xie, P., (2016), Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environmental Earth Sciences, Vol.75, No. 7, PP.599.
-Yu, X., Wang, Y., Niu, R. Hu, Y., (2016), A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China, Int J Environ Res Public Health, Vol.13, No. 5. PP.1-35.