Document Type : پژوهشی

Authors

1 Associate Professor of Climatology, Depatrment of Physical Geography, University of Sistan and Baluchestan

2 - Professor of Climatology, Depatrment of Physical Geography, University of Sistan and Baluchestan

3 - Associate Professor of Geography and Climatology, University of Zanjan

4 Master of Applied Climatology, University of Sistan and Baluchestan

Abstract

Extent Abstract
Introduction
In some parts of Iran, especially in its highlands, the predominant precipitation is snow. The large part of the snow cover is located in the mountainous and impassable areas. Consequently, it is almost impossible to study and investigate the snow point using traditional methods and snowflake stations. Chaharmahal-Bakhtiari province is one of the snowiest areas of Iran, and snowfall has a great role in the status of the water resources supplying the water of its central and southern regions, especially the Karun and Zayandeh Rood Rivers.
Methodology
 Regarding the role and importance of Mount Zardkouh heights and its rivers in the region, the purpose of this study was to investigate the changes in the snow cover levels in Mount Zardukh altitudes. Therefore, remote sensing data, due to its provision of better results, is used with the aim of obtaining detailed information on snow cover. Today, remote sensing technology and revolutionary satellite imagery are created in the field of snow cover study so that wide-area snow measurements are dramatically more accurate over time. The occurrence of the recent droughts, the severe decrease of water resources, and the role and importance of snowfall in the supply of groundwater resources in mountainous areas needs to maximize the use of available resources by making the necessary arrangements.
Discussion
The process of these changes was measured using landsat satellite data, TM and ETM + sensors. In addition, the ndsi index was used to analyze the changes in the snow cover level of April (Farvardin) and September (Shahrivar), which were the peak months of the snow cover.  The peak time of the snow cover melting in the region, Zardkouh Bakhtiari heights, during 1991, 2003, and 2011 (time spans of approximately 10 years) was also investigated to study the changes in the snow cover levels. Pre-processing steps including examining changes in the snow cover levels using the normalized differential snow index (NDSI) and corrections (radiometric, geometric, etc.), processing, classification, and after classification on the selected images using the ENVI software were taken. The NDSI index was applied based on the maximum snow cover per pixel of images (April & September).
Conclusion
 Finally, the values, or maps, derived from the above indicators were classified into two classes of snow cover and snowless surfaces. After this classification, the areas of ​​both classes were summed up for the investigation of the changes in snow cover and snowless cover during the studied years. The results showed that while the amount of the snow cover level in April 1991 was 1758.07 km2, it became 1128.43 km2 in April 2003. In other words, there was a decrease of 529.64 km2 between the years 1991 and 2003. In addition, it was 979.83 km2 in April 2011 and there was a decrease of 778.24 km2, compared to 1991. Moreover, while it was 802.86 km2 in September 1991, it became 615.83 km2 in September 2003. In other words, there was a decrease of 187.06 km2 between September 1991 and September 2003.  In addition, it was 601.83 km2 in September 2011 and there was a decrease of 201.03, compared to September 1991.

Keywords