Analysis of Snowline Altitude Phenology in Northwestern Iran

Document Type : Original Article

Authors

1 Professor of Climatology, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate ProfessorDepartment of Geography, Payame Noor University, Tehran, Iran

3 Ph. D Student of Climatology, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

In this study, MODIS daily snow products (MOD10A1 and MYD10A1) were used in the period 2003-2020, and the snow line height in the northwestern territory of Iran (in two ways: 1) the 0˚ isotherm using LST data and 2) for each cell where there is both snow cover and LST is 0˚ or below 0˚) was estimated monthly, seasonally, annually and long-term, and area maps were drawn. Based on the first and second algorithms, the snow line height was in the maximum phase in January and in the minimum phase in July and August. Based on the second algorithm, in January, negative temperature anomalies accompanied by snowfall led to the expansion of the snow line to an altitude of 1974 meters. The increase in air temperature, snow melting and the sharp decrease in snow cover in July and August have caused the regression of this phenological snow characteristic to an altitude of 4811 meters (Sablan Mountain). In the second algorithm, the maximum advance of the snow line height from October to November by 1374 meters towards lower altitude classes has occurred. The snow line height in the winter season (maximum phase) has been moved to an altitude of 2230 meters based on the second algorithm and to an altitude of 4805 meters in the summer pattern (minimum phase). According to the second algorithm, the years 2011 and 2010 have the lowest and highest snow line heights with an altitude of 3408 meters and 3692 meters, respectively.

Keywords

Main Subjects


Asghari Saraskanrood, S., sadeghi, A. and molanouro, E. (2023). Investigation of changes in snow cover and surface temperature with topographic component of elevation Case study (Urmia Lake catchment). Hydrogeomorphology, 10(34), 75-53. doi: 10.22034/hyd.2022.51719.1639.

Azizi, G., Rahimi, M., Mohammadi, H. & Khoshakhlagh, F. (2017). Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research, 49(3), 381-393. doi: 10.22059/jphgr.2017.217393.1006943.

Bahrami, M., Fathzadeh, A., Zaree Chahooki, M. A. & Taghizadeh Mehrjerdi, R. (2016). Scale Effect Geomorphometric Parameters of Spatial Pattern of Snow Depth. Hydrogeomorphology, 3(6), 95-113.

Balk B, Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research, 36(1), 13–26. https://doi:10.1029/1999WR900251.

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impact of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309.

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., & Vincent, C. (2018). The European Mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794.

Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nat. Clim. Chang. 8, 924–928.

Brown, R., & Armstrong, R. L. (2010). Snow-cover data measurement, products and sources in snow and climate. In Physical Processes, Surface Energy Exchange and Modeling, Armstrong RL, Brun E(eds). Cambridge University Press: Cambridge, UK.

Chen, X., Liang, S., Cao, Y., He, T., & Wang, D. (2015). Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci Rep 5, 16820 (2015). https://doi.org/10.1038/srep16820.

Dietz, A., Conrad, C., Kuenzer, C., Gesell, G., & Dech, S. (2014). Identifying changing snow cover characteristics in central Asia between 1986 and 2014 from remote sensing data‚ Remote Sensing, 6(12), 12752- 12775.

Foster J. L., Hall D. K., Chang, A. T. C., Rango, A., Wergin, W., & Erbe, E. (1999). Effects of snow crystal shape on the scattering of passive microwave radiation. Geoscience & Remote Sensing IEEE Transactions on Selected Topics, 37(2), 1165–1168. https://doi:10.1109/36.752235.

Halabian, A., & Solhi, S. (2020). Snow-cover and Land Surface Temperature investigation, related to the Elevation as a Topographic Factor in the Central Alborz Mountain. Quantitative Geomorphological Research, 9(2), 227-249. doi: 10.22034/gmpj.2020.118243.

Hammond, J. C., Saavedra, F. A., & Kampf, S. K. (2018). Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 38, 4369–4383.

Hantel, M., Maurer, C., & Mayer, D. (2012). The snowline climate of the Alps 1961-2010. Theoretical and Applied Climatology, 110, 517–537. Doi: 10.1007/s00704-012-0688-9.

Harshburger, B., Humes, K., Waldon, V., Blandford, T., Moore, B., & Dezzani, R. (2010). Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow- covered areas. Hydrological Processes, 24, 1285-1295.

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R.S., Clague, J.J., Vuille, M., Buytaert, W., Cayan, D.R., Greenwood, G., Mark, B.G., Milner, A.M., Weingartner, R., & Winder, M. (2017). Toward mountains without permanent snow and ice. Earth’s Future 5, 418–435. https://doi.org/10.1016/j.rse.2006.09.035.

Immerzeel, W., Droogers, P., Jong, S., & Bierkens, M. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan River basins using remote sensing; Remote Sensing of Environment, 113, 40-49.

Jin, X., Ke, C., Xu, Y., & Li, X. (2014). Spatial and temporal variations of snow cover in the Loess Plateau, China. International Journal of Climatology. 35(8), 1721-1731. DOI: 10.1002/joc.4086.

Kashani, A., Salahi, B., Halabian, A. H, & Zeinali, B. (2022). Spatio-temporal variations of snow-covered days in the northwest of Iran using remote sensing data. Journal of RS and GIS for Natural Resources, 15(1), 94-117.

Ke, C., & Liu, X. (2014). MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Climate Research, 59, 15-26.

Keikhosravi Kiany, M.S., & Masoodian, S.A. (2021). Climatology of snow cover accumulation and melting in Iran using MODIS data. Physical Geography Research, 53(1), 109-121. doi:10.22059/jphgr.2021.290500.1007446.

Kohler, T., Wehrli, A., & Jurek, M. (2014). Mountains and climate change: A global concern. In: Centre for Development and Environment (CDE) (Ed.), Sustainable Mountain Development Series. Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia, Bern, Switzerland (136 pp).

Krajci, P., Holko, L., Perdigao, R. A. P., & Parajka, J. (2014). Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountains basins. Journal of Hydrology, 519, 1769-1778.

Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172.

Minder, J.R., Durran, D.R., & Roe, G.H. (2011). Mesoscale controls on the mountainside snow line. Journal of the Atmospheric Sciences, 48, 2107–2127. doi: 10.1175/JAS-D-10-05006.1.

Mirmousavi, S. H, & Saboor, L. (2014). Monitoring the changes of snow cover by using MODIS sensing images at North West of Iran. Geography and development, 12(35), 181-199. Sid. https://sid.ir/paper/77373/en.

Mohammadi Ahmadmahmoudi, P. & Khoorani, A. (2019). Snow Cover Changes of Zagros Range in 2001-2016 Using Daily Data of MODIS. Journal of the Earth and Space Physics, 45(2), 355-371. doi: 10.22059/jesphys.2019.256133.1006997.

Mote, P. W., Li, S., Lettenmaier, D.P., Xiao, M., & Engel, R. (2018). Dramatic declines in snowpack in the western US. Climate and Atmospheric Science 1, 2. DOI: 10.1038/s41612-018-0012-1.

Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018, Remote Sensing of Environment, 243, 111781. https://doi.org/10.1016/j.rse.2020.111781.

Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S. N., & Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424-430.

Pu, Z., & Xu, L. (2009). MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon, 97, 265-278.

Ramage, J. M., & Isacks, B. L. (2003). Interannual variations of snowmelt and refreeze timing in southeast Alaskan icefields, USA. Journal of Glaciology, 49,102–116.

Salahi. B., Halabian. A., Zeinali, B., & Kashani, A. (2024). Analyzing the relationship between snow cover and physiographic factors in the Northwestern mountainous area of Iran, Quantitative Geomorphological Research, 13(2), 195-218. doi: 10.22034/gmpj.2024.456313.1501.

Shahzeidi, S. (2023). Investigating the Relationship between Geomorphological Components (Elevation, Slope and Aspect) and the Maximum Snow-Cover Duration in Talesh Mountains. Geography and Development, 21(73), 166-198. doi: 10.22111/gdij.2023.44795.3497.

She, J., Zhang, Y., Li, X., & Chen, Y. (2014). Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data‚ International journal of remote sensing, 35, 234- 252.

Simpson, J. J., Stitt, J. R., & Sienko, M. (1998). Improved estimates of the areal extent of snow cover from AVHRR data, Journal of Hydrology, 204, 1-23.

Stocker T., Qin D. H., Plattner, G. K., & et al. (2014). Climate Theoretical and Applied Climatology Change, 2013: The Physical Science Basis. Cambridge and New York: Cambridge University Press.

Takaku, J., Tadono, T., & Tsutsui, K. (2014). Generation of high-resolution global DSM from ALOS PRISM, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, 243-248, ISPRS.

Udnaes, H., Alfnes, C. E., & Andreassen, L. M. (2007). Improving runoff modeling using satellite-derived snow cover area. Nord. Hydrol. 38, 21–32.

Yang, J., Zhao, Z., Ni, J., Ren, L., & Wang, Q. (2012). Temporal and spatial analysis of changes in snow cover in western Sichuan based on MODIS images. Journal of Earth Sciences, 55, 1329- 1335.

Yang, Q., Song, K., Hao, X., Shengbo, C., & Bingxue, Z. (2018). An assessment of snow cover duration variability among three basins of Songhua River in Northeast China using binary decision tree. Chin. Geogr. Sci. 28, 946–956. https://doi.org/10.1007/s11769-018-1004-0.

Zeynali, B., Ghale, E. & Safari, S. (2021). Extraction of snow-covered area of Sabalan Mountain using Landsat satellite images by object-oriented classification method. Hydrogeomorphology, 8(26), 97-79. doi: 10.22034/hyd.2021.43548.1566.

Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., & Ma, N. (2019). Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold, Science of the Total Environment, 651, 2712–2726.

Asghari Saraskanrood, S., sadeghi, A. and molanouro, E. (2023). Investigation of changes in snow cover and surface temperature with topographic component of elevation Case study (Urmia Lake catchment). Hydrogeomorphology, 10(34), 75-53. doi: 10.22034/hyd.2022.51719.1639.
Azizi, G., Rahimi, M., Mohammadi, H. & Khoshakhlagh, F. (2017). Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research, 49(3), 381-393. doi: 10.22059/jphgr.2017.217393.1006943.
Bahrami, M., Fathzadeh, A., Zaree Chahooki, M. A. & Taghizadeh Mehrjerdi, R. (2016). Scale Effect Geomorphometric Parameters of Spatial Pattern of Snow Depth. Hydrogeomorphology, 3(6), 95-113.
Balk B, Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research, 36(1), 13–26. https://doi:10.1029/1999WR900251.
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impact of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., & Vincent, C. (2018). The European Mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794.
Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nat. Clim. Chang. 8, 924–928.
Brown, R., & Armstrong, R. L. (2010). Snow-cover data measurement, products and sources in snow and climate. In Physical Processes, Surface Energy Exchange and Modeling, Armstrong RL, Brun E(eds). Cambridge University Press: Cambridge, UK.
Chen, X., Liang, S., Cao, Y., He, T., & Wang, D. (2015). Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci Rep 5, 16820 (2015). https://doi.org/10.1038/srep16820.
Dietz, A., Conrad, C., Kuenzer, C., Gesell, G., & Dech, S. (2014). Identifying changing snow cover characteristics in central Asia between 1986 and 2014 from remote sensing data‚ Remote Sensing, 6(12), 12752- 12775.
Foster J. L., Hall D. K., Chang, A. T. C., Rango, A., Wergin, W., & Erbe, E. (1999). Effects of snow crystal shape on the scattering of passive microwave radiation. Geoscience & Remote Sensing IEEE Transactions on Selected Topics, 37(2), 1165–1168. https://doi:10.1109/36.752235.
Halabian, A., & Solhi, S. (2020). Snow-cover and Land Surface Temperature investigation, related to the Elevation as a Topographic Factor in the Central Alborz Mountain. Quantitative Geomorphological Research, 9(2), 227-249. doi: 10.22034/gmpj.2020.118243.
Hammond, J. C., Saavedra, F. A., & Kampf, S. K. (2018). Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 38, 4369–4383.
Hantel, M., Maurer, C., & Mayer, D. (2012). The snowline climate of the Alps 1961-2010. Theoretical and Applied Climatology, 110, 517–537. Doi: 10.1007/s00704-012-0688-9.
Harshburger, B., Humes, K., Waldon, V., Blandford, T., Moore, B., & Dezzani, R. (2010). Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow- covered areas. Hydrological Processes, 24, 1285-1295.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R.S., Clague, J.J., Vuille, M., Buytaert, W., Cayan, D.R., Greenwood, G., Mark, B.G., Milner, A.M., Weingartner, R., & Winder, M. (2017). Toward mountains without permanent snow and ice. Earth’s Future 5, 418–435. https://doi.org/10.1016/j.rse.2006.09.035.
Immerzeel, W., Droogers, P., Jong, S., & Bierkens, M. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan River basins using remote sensing; Remote Sensing of Environment, 113, 40-49.
Jin, X., Ke, C., Xu, Y., & Li, X. (2014). Spatial and temporal variations of snow cover in the Loess Plateau, China. International Journal of Climatology. 35(8), 1721-1731. DOI: 10.1002/joc.4086.
Kashani, A., Salahi, B., Halabian, A. H, & Zeinali, B. (2022). Spatio-temporal variations of snow-covered days in the northwest of Iran using remote sensing data. Journal of RS and GIS for Natural Resources, 15(1), 94-117.
Ke, C., & Liu, X. (2014). MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Climate Research, 59, 15-26.
Keikhosravi Kiany, M.S., & Masoodian, S.A. (2021). Climatology of snow cover accumulation and melting in Iran using MODIS data. Physical Geography Research, 53(1), 109-121. doi:10.22059/jphgr.2021.290500.1007446.
Kohler, T., Wehrli, A., & Jurek, M. (2014). Mountains and climate change: A global concern. In: Centre for Development and Environment (CDE) (Ed.), Sustainable Mountain Development Series. Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia, Bern, Switzerland (136 pp).
Krajci, P., Holko, L., Perdigao, R. A. P., & Parajka, J. (2014). Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountains basins. Journal of Hydrology, 519, 1769-1778.
Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172.
Minder, J.R., Durran, D.R., & Roe, G.H. (2011). Mesoscale controls on the mountainside snow line. Journal of the Atmospheric Sciences, 48, 2107–2127. doi: 10.1175/JAS-D-10-05006.1.
Mirmousavi, S. H, & Saboor, L. (2014). Monitoring the changes of snow cover by using MODIS sensing images at North West of Iran. Geography and development, 12(35), 181-199. Sid. https://sid.ir/paper/77373/en.
Mohammadi Ahmadmahmoudi, P. & Khoorani, A. (2019). Snow Cover Changes of Zagros Range in 2001-2016 Using Daily Data of MODIS. Journal of the Earth and Space Physics, 45(2), 355-371. doi: 10.22059/jesphys.2019.256133.1006997.
Mote, P. W., Li, S., Lettenmaier, D.P., Xiao, M., & Engel, R. (2018). Dramatic declines in snowpack in the western US. Climate and Atmospheric Science 1, 2. DOI: 10.1038/s41612-018-0012-1.
Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018, Remote Sensing of Environment, 243, 111781. https://doi.org/10.1016/j.rse.2020.111781.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S. N., & Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424-430.
Pu, Z., & Xu, L. (2009). MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon, 97, 265-278.
Ramage, J. M., & Isacks, B. L. (2003). Interannual variations of snowmelt and refreeze timing in southeast Alaskan icefields, USA. Journal of Glaciology, 49,102–116.
Salahi. B., Halabian. A., Zeinali, B., & Kashani, A. (2024). Analyzing the relationship between snow cover and physiographic factors in the Northwestern mountainous area of Iran, Quantitative Geomorphological Research, 13(2), 195-218. doi: 10.22034/gmpj.2024.456313.1501.
Shahzeidi, S. (2023). Investigating the Relationship between Geomorphological Components (Elevation, Slope and Aspect) and the Maximum Snow-Cover Duration in Talesh Mountains. Geography and Development, 21(73), 166-198. doi: 10.22111/gdij.2023.44795.3497.
She, J., Zhang, Y., Li, X., & Chen, Y. (2014). Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data‚ International journal of remote sensing, 35, 234- 252.
Simpson, J. J., Stitt, J. R., & Sienko, M. (1998). Improved estimates of the areal extent of snow cover from AVHRR data, Journal of Hydrology, 204, 1-23.
Stocker T., Qin D. H., Plattner, G. K., & et al. (2014). Climate Theoretical and Applied Climatology Change, 2013: The Physical Science Basis. Cambridge and New York: Cambridge University Press.
Takaku, J., Tadono, T., & Tsutsui, K. (2014). Generation of high-resolution global DSM from ALOS PRISM, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, 243-248, ISPRS.
Udnaes, H., Alfnes, C. E., & Andreassen, L. M. (2007). Improving runoff modeling using satellite-derived snow cover area. Nord. Hydrol. 38, 21–32.
Yang, J., Zhao, Z., Ni, J., Ren, L., & Wang, Q. (2012). Temporal and spatial analysis of changes in snow cover in western Sichuan based on MODIS images. Journal of Earth Sciences, 55, 1329- 1335.
Yang, Q., Song, K., Hao, X., Shengbo, C., & Bingxue, Z. (2018). An assessment of snow cover duration variability among three basins of Songhua River in Northeast China using binary decision tree. Chin. Geogr. Sci. 28, 946–956. https://doi.org/10.1007/s11769-018-1004-0.
Zeynali, B., Ghale, E. & Safari, S. (2021). Extraction of snow-covered area of Sabalan Mountain using Landsat satellite images by object-oriented classification method. Hydrogeomorphology, 8(26), 97-79. doi: 10.22034/hyd.2021.43548.1566.
Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., & Ma, N. (2019). Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold, Science of the Total Environment, 651, 2712–2726.