Abushandi, E., & Merkel, B. (2013). Modelling rainfall–runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan.
Water Resources Management, 27(7), 2391–2409.
https://doi.org/10.1007/s11269-013-0292-3.
Aghabeigi, N., Esmaili Ouri, A., Abazar, N., Mostafazadeh, R., & Golshan, M. (2019). Effects of climate change on runoff using the IHACRES hydrological model in some watersheds of Ardabil Province.
Iranian Journal of Irrigation and Water Engineering, 10(2), 178–189.
https://doi.org/10.22125/iwe.2019.100750.
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall–runoff simulation: A case study of the Kan watershed, Iran.
Physics and Chemistry of the Earth, 111, 65–77.
https://doi.org/10.1016/j.pce.2019.05.002.
Bayati Khatibi, M., Kakapour, V., & Sadeghi, M. (2025). Discharge prediction using IHACRES semi-conceptual model: A case study of Gharasoo Basin, Kermanshah province.
Quantitative Geomorphological Researches, 13(3), 104–119.
https://doi.org/10.22034/gmpj.2024.384992.1417.
Chen, T. Q., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).
https://doi.org/10.1145/2939672.2939785.
Croke, B. F. W., & Jakeman, A. J. (2008). Use of the IHACRES rainfall–runoff model in arid and semi-arid regions. In H. S. Wheater, S. Sorooshian, & K. D. Sharma (Eds.), Hydrological modeling in arid and semi-arid areas (pp. 41–48). Cambridge University Press Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics. Springer.
Esmali, A., Golshan, M., & Kavian, A. (2021). Investigating the performance of SWAT and IHACRES in streamflow simulation under different climatic regions in Iran. Atmósfera, 34(1), 79–96. https://doi.org/10.20937/ATM.2021.34.01.07
monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. Journal of Hydrology, 575, 1200–1213. https://doi.org/10.1016/j.jhydrol.2019.06.025
Fattahi, P., Ashrafzadeh, A., Pirmoradian, N., & Vazifedoust, M. (2022). Integrating IHACRES with a data-driven model to investigate the possibility of improving monthly flow estimates. Water Supply, 22(1), 360–371. https://doi.org/10.2166/ws.2021.342
Fouladi Nasrabadi, M., Amirabadizadeh, M., Pourreza Bielandi, M., & Yaghoubzadeh, M. (2022). Evaluation of IHACRES model performance with ARMAX and EXPUH linear methods (Case study: Shoor river basin in Qaen).
Journal of Water and Soil, 36(1), 17–30.
https://doi.org/10.22067/jsw.2022.74115.112.
Fouladi Nasrabadi, M., Amirabadizadeh, M., Pourreza Bielandi, M., & Yaghoubzadeh, M. (2022). Evaluation of IHACRES model performance with ARMAX and EXPUH linear methods (Case study: Shoor river basin in Qaen). Journal of Water and Soil, 36(1), 17–30.
https://doi.org/10.22067/jsw.2022.74115.1122.
Ismail, I. I., Jibril, M. M., Muhammad, U. J., Mahmoud, I. A., Aliyu, U. U., Abdullahi, A., & Malami, S. I. (2025). Ensemble machine learning technique based on Gaussian algorithm for stream flow modelling.
Techno-Computing Journal, 1(2), 1–17.
https://doi.org/10.71170/tecoj.2025.1.2.pp1-17.
James K,. W. (2024). Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA).
Hydrology and Earth System Sciences, 28, 4427–4454.
https://doi.org/10.5194/hess-28-4427-2024.
Khorsandi Kohanestani, Z., & Ta'atpour, F. (2025). Comparison of the efficiency of integrated models and machine learning methods in discharge simulation. Hydrogeomorphology, 12(42), 60–80. https://doi.org/10.22034/hyd.2024.63280.1754.
Mohammadi, B., Moazenzadeh, R., Christian, K., & Duan, Z. (2021). Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environmental Science and Pollution Research, 28, 65752–65768. https://doi.org/10.1007/s11356-021-15131-6.
Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall–runoff modeling. Scientific Reports, 12, 12096. https://doi.org/10.1038/s41598-022-16217-1.
Momeneh, S. (2022). Comparison of artificial intelligence models with IHACRES model in flow modeling of Gamasiab river basin.
Modeling and Management of Water and Soil, 2(3), 1–16.
https://doi.org/10.22098/mmws.2022.9972.1076.
Nazeri Tahroudi, M., Ahmadi, F., & Mirabbas, R. (2023). Performance comparison of IHACRES, random forest and copula-based models in rainfall–runoff simulation.
Applied Water Science, 13, 134.
https://doi.org/10.1007/s13201-023-01929-y.
Niromandfard, F., Zakerinia, M., & Yazerloo, B. (2018). Investigating the effect of climate change on river flow using IHACRES rainfall–runoff model. Irrigation Sciences and Engineering, 41(3), 103–117. https://doi.org/10.22055/jise.2018.13750.
Prakash, S., Sandilya, S. S., & Das, B. S. (2025). Discharge prediction in meandering compound channel using XGBoost and CATBoost. In M. Pandey, N. V. Umamahesh, Z. Ahmad, & G. Oliveto (Eds.),
Hydraulics and fluid mechanics, volume 2. HYDRO 2023. Lecture Notes in Civil Engineering, 2 (pp. 429–437). Springer.
https://doi.org/10.1007/978-981-97-8895-8_30.
Saber, M., Salahi, B., & Maleki Meresht, R. (2025). Simulating the water balance of Aras basin based on the CNRM-CM6 climate model. Hydrogeomorphology, 12(42): 99 – 117. DOI: 10.22034/hyd.2024.63758.1759.
Salehpoor Laghani, J., Ashrafzadeh, A., & Moussavi, S. A. (2020). Investigating the uncertainty of data-based models in forecasting monthly flow of the Hablehroud River. Iranian Journal of Soil and Water Research, 51(5), 1265–1280. https://doi.org/10.22059/ijswr.2020.286920.668288.
Yangyu, D., Zhang, D., Zhang, D., Wu, J., & Liu, Y. (2023). A hybrid ensemble machine learning model for discharge coefficient prediction of side orifices with different shapes. Flow Measurement and