Groundwater recharge assessment in the Urmia aquifer using WetSpass-M model

Document Type : Original Article

Authors

1 Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University

2 Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University

3 Department of Range and Watershed Management, Faculty of Natural Resources, Lorestan University

Abstract

Accurate estimating recharge from precipitation and its assessment in the aquifers of Iran is crucial. This study employs the WetSpass-M model to estimate annual recharge in the Urmia aquifer plain. Utilizing available data, the model calculates recharge values in a distributed manner, assessing water balance components monthly, seasonally, and annually. After calibration, monthly values for runoff, recharge, evapotranspiration and deep percolation were estimated for 2006–2020. The western basin exhibited the highest runoff, while the northern, western, and southern regions showed the highest recharge rates. The western and central parts had higher evapotranspiration, whereas the northern areas had the lowest. The water balance results indicated that approximately 47.54% of annual precipitation is converted to recharge, 14.24% to evapotranspiration, 26.3% to runoff, and 2% to interception. In the validation stage, estimated values from WetSpass-M were compared against observed data from the Scanlon method using observational well data from 2009 and 2019. Evaluation criteria included KGE, PBIAS, RSR, MAE, R, and Dr. The results showed that the estimated annual recharge values closely matched the observed values, demonstrating satisfactory model performance. The model's performance, assessed using the KGE and Dr criteria—which are deemed the most appropriate metrics—revealed that the WetSpass recharge values closely align with those obtained through the Scanlon method.

Keywords

Main Subjects


Abdollahi, K., Bayati, S., Nasr Esfehani, M. )2019(. A comparative study on spatial variation in the runoff and groundwater recharge due to differences in land use and slope classes: a case study of the Vanak Basin. Iranian Journal of Watershed Engineering and Management. 11(4): 866-878.
Abdollahi. K., Bashir. I., Batelaan. O. (2012). WetSpass Graphical User Interface. Cartography of Higher Swiss Education.
Aish, A. M., Batelaan, O., & De Smedt, F. (2010). Distributed recharge estimation for groundwater modeling using WetSpass model, case study-Gaza strip, Palestine. Arabian Journal for science and Engineering, 35(1), 155.
Andualem, T. G., Demeke, G. G., Ahmed, I., Dar, M. A., & Yibeltal, M. (2021). Groundwater recharge estimation using empirical methods from rainfall and streamflow records. Journal of Hydrology: Regional Studies, 37, 100917.
Araghi, A., & Adamowski, J. F. (2024). Assessment of 30 gridded precipitation datasets over different climates on a country scale. Earth Science Informatics, 17(2), 1301-1313.
Armanuos, A. M., Negm, A., Yoshimura, C., & Valeriano, O. C. S. (2016). Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arabian Journal of Geosciences, 9, 1-14.
Azizi, G., Safarrad, T., Mohammadi, H., & Faraji Sabokbar, H. (2016). Evaluation and comparison of reanalysis precipitation data in Iran. Physical Geography Research, 48(1), 33-49.
Babaei, M., Ketabchi, H. (2020). Estimation of groundwater recharge rate using a distributed model (Case study of Rafsanjan aquifer, Kerman Province). Iranian Journal of Soil and Water Research, 51(6): 1457-1468.
Bashirian, F., Rahimi, D., Movahedi, S., Zakerinejad, R. (2020). Analysis of hydrology cycle in the Urmia lake basin with the WetSpass-M model. Iranian Water Research Journal. 14 (3): 85-95.
Batelaan, O., & De Smedt, F. (2007). GIS-based recharge estimation by coupling surface–subsurface water balances. Journal of Hydrology, 337(3-4), 337-355.
Bredehoeft, J. D. (2002). The water budget myth revisited: why hydrogeologists model. Groundwater, 40(4), 340-345.
Chatterjee, R. S., Pranjal, P., Jally, S., Kumar, B., Dadhwal, V. K., Srivastav, S. K., & Kumar, D. (2020). Potential groundwater recharge in north-western India vs spaceborne GRACE gravity anomaly based monsoonal groundwater storage change for evaluation of groundwater potential and sustainability. Groundwater for Sustainable Development, 10, 100307.
Crosbie, R. S., McCallum, J. L., Walker, G. R., & Chiew, F. H. (2012). Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeology Journal, 2(20), 245-261.
Darand, M., & Zand Karimi, S. (2016). Evaluation of the accuracy of the Global Precipitation Climatology Center (GPCC) data over Iran. Iranian Journal of Geophysics, 10(3), 95-113.
De Groen, M. M., & Savenije, H. H. (2006). A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resources Research, 42(12).
de Medeiros, F. J., de Oliveira, C. P., & Avila-Diaz, A. (2022). Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather and Climate Extremes, 38, 100511.
Dereje, B., & Nedaw, D. (2019). Groundwater recharge estimation using WetSpass modeling in Upper Bilate Catchment, southern Ethiopia. Momona Ethiopian Journal of Science, 11(1), 37-51.
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., & Leduc, C. (2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review, Water Resources Research, 45(7).
Ghouili, N., Horriche, F. J., Zammouri, M., Benabdallah, S., & Farhat, B. (2017). Coupling WetSpass and MODFLOW for groundwater recharge assessment: a case study of the Takelsa multilayer aquifer, northeastern Tunisia. Geosciences Journal, 21, 791-805.
Goodarzi, L., Akhondali, A. M., Zarei, H. (2014). Identification of sites suitable for artificial recharging using GIS and AHP techniques (Case study: Oshtorinan Plain). Iranian Journal of RS and GIS for Natural Resources, 5(4): 47-60.
Graf, R., & Przybyłek, J. (2014). Estimation of shallow groundwater recharge using a GIS-based distributed water balance model. Quaestiones Geographicae, 33(3), 27-37.
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91.
Hosseini-Moghari, S. M., Araghinejad, S., & Ebrahimi, K. (2018). Spatio-temporal evaluation of global gridded precipitation datasets across Iran. Hydrological Sciences Journal, 63(11), 1669-1688.
Kazempour Choursi, S., Erfanian, M., Abghari, H., Miryaghoubzadeh, M., & Javan, K. (2024). Enhancing drought monitoring through spatial downscaling: A geographically weighted regression approach using TRMM 3B43 precipitation in the Urmia Lake Basin. Earth Science Informatics, 1-26.
Khayyun, T. S., & Mahdi, H. H. (2020). Estimation of average groundwater recharge by using groundwater modelling system (GMS) program for upper zone of Iraqi aquifers system. Journal of Critical Reviews, 7, 3094-112.
Kisiki, C. P., Ayenew, T., & Mjemah, I. C. (2023). Estimation of groundwater recharge variability using a GIS-based distributed water balance model in Makutupora basin, Tanzania. Heliyon, 9(4).
Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4, 315-328.
Mahmoodi, Z., Bahremand, A. R., Abdollahi, K., Sadoddin, A., Kuhestani, S., Komaki, C. B. (2020). Investigation of temporal and spatial variations of water balance components and hydrograph separation of Arazkouse watershed through groundwater recharge modeling using WetSpass model. Iranian Journal of Soil and Water Conservation Research. 27 (1): 25-47.
Mehdidoost Roudbaneh, I., Janatrostami, S., Ashrafzadeh, A., & Javadi, S. (2023). Accuracy assessment of groundwater recharge estimation using SWAT and MODFLOW in paddy fields (Case study: Astane-Kouchsefahan aquifer). Iranian Journal of Soil and Water Research, 54(10), 1541-1564.
Miri, M., Raziei, T., & Rahimi, M. (2016). Evaluation and statistically comparison of TRMM and GPCC datasets with observed precipitation in Iran. Journal of the Earth and Space Physics, 42(3), 657-672.
Molla, D. D., Tegaye, T. A., & Fletcher, C. G. (2019). Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model. Journal of Hydrology: Regional Studies, 24, 100615.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Nadiri, A. A., Gharekhani, M., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2017). Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment, 574, 691-706.
Nadiri, A. A., Naderi, K., Khatibi, R., & Gharekhani, M. (2019). Modelling groundwater level variations by learning from multiple models using fuzzy logic. Hydrological Sciences Journal, 64(2), 210-226.
Nyembo, L. O., Larbi, I., Mwabumba, M., Selemani, J. R., Dotse, S. Q., Limantol, A. M., & Bessah, E. (2022). Impact of climate change on groundwater recharge in the Lake Manyara catchment, Tanzania. Scientific African, 15, e01072.
Parvin, M. )2020(. Zoning areas in need of underground water in the catchment basin of Mahidasht Kermanshah. Iranian Journal of Hydrogeomorphology, 7(22): 129-153
Safari Shad, M., Habibnejad Roshan, M., Solaimani, K., Ildoromi, A. R., Zeinivand, H. (2017). The potential effects of the climate change on the river flow in Hamadan Watershed-Bahar. Iranian Journal of Hydrogeomorphology, 4(10): 81-98.
Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18-39.
Seddon, D., Kashaigili, J. J., Taylor, R. G., Cuthbert, M. O., Mwihumbo, C., & MacDonald, A. M. (2021). Focused groundwater recharge in a tropical dryland: Empirical evidence from central, semi-arid Tanzania. Journal of Hydrology: Regional Studies, 37, 100919.
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., & MacDonald, A. M. (2013). Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3(4), 374-378.
Teklebirhan, A., Dessie, N., & Tesfamichael, G. (2012). Groundwater recharge, evapotranspiration and surface runoff estimation using WetSpass modeling method in Illala catchment, northern Ethiopia. Momona Ethiopian Journal of Science, 4(2), 96-110.
Tilahun, K., & Merkel, B. J. (2009). Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeology Journal, 17(6), 1443.
Watto, A. (2015). The economics of groundwater irrigation in the Indus Basin, Pakistan: Tube-well adoption, technical and irrigation water efficiency and optimal allocation.
Yenehun, A., Dessie, M., Nigate, F., Belay, A. S., Azeze, et al.  (2022). Spatial and temporal simulation of groundwater recharge and cross-validation with point estimations in volcanic aquifers with variable topography. Journal of Hydrology: Regional Studies, 42, 101142.
Zarei, M., Ghazavi, R., Vali, A., & Abdollahi, K. (2016). Estimating groundwater recharge, evapotranspiration and surface runoff using land-use data: a case study in northeast Iran. Biological Forum – An International Journal, 8, 196-202.