بررسی عوامل موثر بر سیل‌خیزی حوضه آبریز هر رود لرستان و تعیین مناطق پر ریسک با استفاده از مدل Fuzzy-TOPSIS

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشگاه یزد، یزد، ایران

2 کارشناسی ارشد ژئومورفولوژی، گروه جغرافیا، دانشگاه یزد، یزد، ایران

چکیده

مطالعات سیل‌خیزی و ارزیابی میزان خطرات آن امروزه به دلیل افزایش فراوانی و شدت آن از یک سو و اثرگذاری و پیامدهای خسارت بار مالی و جانی آن از سوی دیگر، مورد توجه علوم مختلف قرار گرفته است. این پژوهش به دنبال بررسی اثرات عوامل مهم ایجاد سیل، تعیین اهمیت آنها و شدت اثرات هر عامل در بخشهای مختلف حوضه آبریز هر رود در استان لرستان است. برای این مهم از روش فازی-تاپسیس استفاده شده است. در ابتدا مهمترین شاخص‌ها بر حسب مطالعات قبلی و تجربه شامل بارش، جنس‌زمین، خاک، کاربری اراضی، شبکه زهکشی، ارتفاع، شیب و جهت شیب مشخص شدند. سپس، این شاخصها به شکل لایه‌های اطلاعاتی درآمده و بازطبقه‌بندی گردیدند. به منظور فازی‌سازی لایه‌ها، برای هر یک از آنها بر حسب نوع اثرگذاری، توابع عضویت خاصی تعریف گردید. یافته‌ها نشان داد که توابع عضویت خطی شامل مثلثی و ذوذنقه‌ای عملکرد بهتری در فازی‌سازی داده‌ها داشته‌اند و عملگر فازی گامای 0.9 همبستگی بالاتری را بین مؤلفه‌های تعریف شده در سیل‌خیزی نشان داد. بر اساس این نقشه، شیب‌های 0-10 درصد، جهت شیب 315-360 درجه، طبقات ارتفاعی 1500-1800 متر، خاک‌های گروه هیدرولوژیکی D، کاربری‌اراضی کشت دیم، سنگهای کنگلومرا، فاصله 300 متری آّبراهه‌های اصلی و بارش‌های 500-800 میلی‌متر مهمترین سطوح در ایجاد پهنه‌های سیل‌خیز حوضه بوده‌اند. نتیجه نقشه حاصله از مدل فازی- تاپسیس نشان داد که جنس زمین و کاربری زمین بویژه در ساحل رودخانه اصلی در مناطق میانی حوضه، مهمترین عوامل تعیین‌کننده سیل‌خیزی از نظر فراوانی و شدت است که با واقعیت‌های حوضه‌ مطابقت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the factors influencing flooding in the Hor Roud catchment areas and identifying high-risk zones using the fuzzy-TOPSIS model

نویسندگان [English]

  • Mohamad Sharifi Paichoon 1
  • Leila Moosavi 2
1 Associate Prof. of geomorphology, Department of Geography, Yazd University, Yazd, Iran,
2 . Master of Science in Geomorphology, Yazd University, Department of Geography, Yazd University, Yazd, Iran,
چکیده [English]

Flooding, while a natural phenomenon that contributes to the formation of fertile plains and agricultural terraces is now recognized as one of the most significant natural disasters globally. This research examines the key factors influencing flooding, assessing their significance and impact across different areas of the Hor Roud catchment. Initially, critical indicators such as precipitation, soil, lithology, land use, drainage networks, elevation, slope, and slope direction were identified, mapped, and organized into information layers. These layers were converted into raster format and reclassified. To refine the data, a fuzzy logic approach was applied, utilizing linear and triangular functions based on the properties and effects of each layer. The fuzzy layers were then combined using gamma (0.9) operators. Additionally, the TOPSIS technique was employed to pinpoint the most influential indicators within the basin’s spatial zones. The final results, obtained from a fuzzy logic map and a TOPSIS technique, indicated that distant to the main stream, lithology, and land use were the most influential factors contributing to flooding in the Hor Roud catchment. The maximum flooding occurs along the banks of the main rivers, where conglomerate, marl, and clay soils cultivated. The flood risk map identified key contributing factors: slopes between 0-10%,, elevations of 1500-1800 meters, hydrological group D soils, cultivated land, conglomerate rock formations, proximity to main streams , and annual precipitation levels between 800-800 millimeters. The findings revealed that distant to the main stream, lithology, and land use were the most significant factors driving flooding in the Hor Roud catchment.

کلیدواژه‌ها [English]

  • Flood risk, zoning
  • TOPSIS, Fuzzy
  • logic, Hor Roud
  • Lorestan
Abedini, M., & Fathi Jokdan, R. (2016). Flood risk zoning in the Korganrud Basin using ArcGIS. Hydrogeomorphology, 3(7), pp. 1-17.
Abedini, M., Babaei Olm, T., & Pasban, A. (2024). Evaluation and zoning of flood risk using the MFFPI model (Case study: Shafarud basin, Gilan province). Geography and human relationships, 7(1), pp. 807-821.
Alizadeh, A. (2005). Principles of applied hydrology. Mashhad: Imam Reza University Press, 18th Edition.
Chen, J., Zhao, S., & Wang, H., 2011. Risk analysis of flood disaster based on fuzzy clustering method. Energy Procedia, 5, 1915-1919.
Cook, A., & Merwade, V. (2009). Effect of topographic data, geometric configuration and modelling approach on flood inundation mapping. Journal of Hydrology, 377(1), 131-142.‏
Dadrasi Sabzevari, A. (1999). Comparison of the fuzzy logic model with other GIS-compatible conceptual models for locating flood-prone areas using ETM sensor satellite data. Geomatics conference, Tehran.
Esfandiari Darabad, F., Rahimi, M., & Gholamreza Pour, M. (2019). Flood zoning of the Ajarlo Chai watershed using the L-THIA method and fuzzy logic. Quantitative geomorphological research, 8(2), 155-171.
Fernandez, D., and Lutz, M. A. (2009). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis, Engineering Geology 111(1):90-98.
Feyz-Nia, S., Mousavian, M., Abdollahian Dehkordi, Z., & Ebrahimi Darcheh, Kh. (2016). Investigating the effect of geology on flood susceptibility (Case study: Junqan watershed, located in Shahrekord). Iranian journal of natural resources, 69(4).
Feyz-Nia, S., (2001). Sediment yield potential in geological formations. Tehran University Press.
Ganji, K., Gharechelou, S., Ahmadi, A., & Johnson, B. A. (2022). Riverine flood vulnerability assessment and zoning using geospatial data and MCDA method in Aq’Qala. International Journal of Disaster Risk Reduction, 82, 103345.
Ghanavati, E., Karam, A., & Agha Alikhani, M. (2011). The efficiency of the analytic hierarchy process in flood susceptibility studies. Iranian Geographical Association Scientific-Research Quarterly, 9(31).
Ghanavati, E. (2003). A geomorphological model of flooding in the Gamasiab basin. Geographical research quarterly, pp. 172-184.
Gao, C., Zhang, B., Shao, S., Hao, M., Zhang, Y., Xu, Y., ... & Wang, Z. (2023). Risk assessment and zoning of flood disaster in Wuchengxiyu Region, China. Urban Climate, 49, 101562.
Gacul, L. A., Ferrancullo, D., Gallano, R., Fadriquela, K. J., Méndez, K. J., Morada, J. R., ... & Gacu, J. (2024). GIS-Based Identification of Flood Risk Zone in a Rural Municipality Using Fuzzy Analytical Hierarchy Process (FAHP). RIG, 33.
Golshan, M.; Jahanshaha, A.; Afzali, A. (2016). Flood hazard zoning using HEC-RAS in GIS environment and impact of manning roughness coefficient changes on flood zones in Semi-arid climate, Desert 21, Pp. 24-34, Online at http://desert.ut.ac.ir
Hosseinzadeh, S. R., & Jahadi Toroghi, M. (2007). The effects of Mashhad city expansion on natural drainage patterns and the intensification of urban floods. Geographical research, No. 61, Tehran, pp. 145-159.
Hosseini, S. M., Jafarbeyglu, M., Yamani, M., & Geravand, F. (2015). Prediction of historical floods in the Kashkan River using the hydrological model HEC-HMS. Quantitative geomorphological research, 4(1), 118-133.
Jahanfar, A., (2009). Flood Risk Zoning in the Islamabad-e gharb basin using the AHP model. Master's thesis, Teacher Training University of Sabzevar.
James, Douglas. Larsen, Dean, and Glover, Terrence. (1980). Floodplain Management Needs Precuiler to Arid Climates. Water Resources Bulletin 16(6),1020-1029.
Jalalian, S. E. (2021). Evaluation and zoning of flood susceptibility in temporal and spatial Scales: A case study of the Gorganrud River basin, Golestan province. Geographical spatial planning journal, 11(42), pp. 143-162.
Khalilizadeh, M. (2003). Flood risk assessment and management in the city of Gorgan. Master's thesis in watershed management, Gorgan University of Agricultural Sciences and Natural Resources.
Kvocka, D.; Falconer, R. A.; Bray, M. (2016). Flood hazard assessment for extreme flood events, Natural Hazards, Vol. 84, 1569–1599.
Habibnejad Roshan, M., Shahedi, K., & Roshan, S. H. (2023). Identification and prioritisation of flood-prone areas using GIS-based analytic hierarchy process (AHP) (Case study: Karun Watershed). Watershed Engineering and Management, 15(3), 367-385.
Kittipongvises, S., Phetrak, A., Rattanapun, P., Brundiers, K., Buizer, J. L., & Melnick, R. (2020). AHP-GIS analysis for flood hazard assessment of the communities near the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction, 48, 101612.
Lai, C., Shao, Q., Chen, X., Wang, Z., Zhou, X., Yang, B., & Zhang, L. (2016). Flood risk zoning using a rule mining based on an ant colony algorithm. Journal of Hydrology, 542, 268-280.
Malekian et al. (2012). Zoning of flood potential in the Akhtarabad watershed using fuzzy analytic hierarchy process. Physical geography research, 44(4), pp. 131-152.
Martinez, J. M., & Le Toan, T., 2007. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote sensing of Environment, 108(3), 209-223.‏
Mousavi, M., Negahban, S., Rakhshani Moghaddam, H., & Hosseinzadeh, M., (2016). Evaluation and zoning of flood risk using fuzzy TOPSIS logic in GIS environment: A case study of Baghmalek watershed. Journal of Natural Environmental Hazards, 5(10).
Negahban, S., & Mokarram, M., (2024). The relationship between landform classification, land use, and flood-prone areas in Bushehr province. Quantitative geomorphological research, 13(1), pp. 64-79.
Novotny, V, & Olem, H (1994). Water Quality: Prevention, Identification, and Management of Diffuse pollution, van Nosttrand kcinhold, New York, 250-258.
Qin, Q., Tang, H., Chen, H., 2011, Zoning of Highway Flood-Triggering Environment for Highway in Fuling District, Chongqing, Journal of the International Society for Optical Engineering, No. 8205, PP. 820530-8.
Rajabi, M., Rostaei, Sh., & Barzkar, M. (2022). Assessing flood potential of sub-basins based on morphometric parameters and correlation analysis (Case study: Zab to Mirab basin). Journal of Geography and Planning, 26(79), pp. 127-139.
Rezaei Moghaddam, M. H., Mokhtari, D., & Shafiei Mehr, M. (2021). Flood risk zoning in the Shaharchay of Mianeh basin using the VIKOR model. Hydrogeomorphology, 8(28), pp. 19-37.
Rezaei Moghaddam, M. H., Rahimipour, T. (2023). Preparation of flood hazard potential map using two methods: frequency ratio and statistical index (Case study: Aji Chai Basin). Environmental hazards management, 10(4), 291-308.
Rezaei Moghaddam, M. H., Mokhtari, D., Rahimipour, T., Taghizadeh, V. (2024). Preparation of flood hazard potential map using the EBF statistical method: A Case Study of Azarshahr Chay Basin. Physical geography research, 56(2), 33-49.
Riahi, V., & Zamani, L., (2015). Investigating geographical factors influencing flood susceptibility in rural areas: A case study of villages in Sarvabad County. Regional planning quarterly, 5(17).91-102.
Spachinger, K.; Dorner, W.; Metzka, R. (2008). Flood Risk and Flood hazard maps - Visualisation of hydrological risks, Conference Series Earth and Environmental Science 4(1).
Sahraei, R., Kanani‐Sadat, Y., Homayouni, S., Safari, A., Oubennaceur, K., & Chokmani, K. (2023). A novel hybrid GIS‐based multi‐criteria decision‐making approach for flood susceptibility analysis in large ungauged watersheds. Journal of Flood Risk Management, 16(2), e12879.
Sun, R., Gong, Z., Gao, G., & Shah, A. A. (2020). Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. International Journal of Disaster Risk Reduction, 51, 101768.
Shabanloo, S., Sedghi, H., Saghafian, B., & Mousavi Jahromi, H. (2008). Flood zoning in the river network of Golestan Province using GIS. Iranian water research journal, 2(3), pp. 11-22.
Sharifi Paichon, M., & Parnoon, F. (2018). Spatial evaluation and analysis of flood susceptibility in the Qarasu River using fuzzy logic in GIS environment. Natural environmental hazards, 7(15), pp. 17-30.
Sharifi Paichon, M., Omidvar, K., & Motazakker, K. (2019). Application of cluster analysis and multivariate regression in flood potential assessment with emphasis on hydrogeomorphological parameters (Case Study: Maroon River Basin). Natural environmental hazards, 8(21), pp. 75-92.
Srinivas, V. V., Tripathi, S., Rao, A. R., & Govindaraju, R. S., 2008. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. Journal of Hydrology, 348(1), 148-166.‏
Smit, K(1992). Environmental hazards, Assessing risks and reducing disasters, Routledge.254 Kochel, R.C.Gemorphic impact of large floods, In: Baker. V, R, R, C. Kochal, and P.C patton, (eds), Flood Geomorphology, Canada: Toronto, Wiley, 1988.
Torgersen, G.; Rød, J. K.;  Kvaal, K.; Bjerkholt, J. T.; Lindholm, O. G.(2017) Evaluating Flood Exposure for Properties in Urban Areas Using a Multivariate Modelling Technique, 9, 318.
Van der Sande, C. J., De Jong, S. M., & De Roo, A. P. J. )2003). A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of applied earth observation and geoinformation, 4(3), 217-229.‏
Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., ... & Duan, H. (2018). A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sensing, 11(1), 62.
Ziari, K., Rajaei, S. A., & Darabkhani, R. (2021). Zoning flood potential using analytic hierarchy process (AHP) and fuzzy logic in GIS Environment: A case study of Ilam city. Journal of crisis management, 10(19), pp. 21-30.
Zin, W. W.; Kawasaki, A.; Akeuchi, W.; San, Z. M.L.T.; Htun, K.Z.; Aye, T.H.; Win, S. (2018). Flood Hazard Assessment of Bago River Basin, Myanmar, Disaster Research Vol. 13 No.1.
Zhou, L., & Liu, L. (2024). Enhancing dynamic flood risk assessment and zoning using a coupled hydrological-hydrodynamic model and spatiotemporal information weighting method. Journal of Environmental Management, 366, 121831.