Akbari Chegani, N. (2017). Spatial analysis of the quality of the residential environment in the city of Eslamabad-e Gharb. M.Sc. Thesis in urban planning, Hakim Sabzevari University.
Alizadeh, A. (2014). Principles of applied hydrology. 40th edition, Mashhad: Imam Reza University Press.
Behremand, A., Hamdami, Gh., & Saniei, I. (2014). Analysis of the trend of long-term changes in rainfall and discharge in the west of Lake Urmia. Journal of Watershed Management Research, 4 (8), 43-57.
Baik, J., Park, J., Hao, Y., & Choi, M. (2022). Integration of multiple drought indices using a triple collocation approach.
Stochastic Environmental Research & Risk Assessment,
36 (4), 1177-1195.
https://doi.org/10.1007/s00477-021-02044-7
Bak, B., & Kubiak-Wojcicka, K. (2016). Assessment of Meteorological and Hydrological Drought in Torun (Central Poland Town) in 1971-2010 Based on Standardized Indicators, 3rd International Conference-Water Resources and Wetlands, (pp. 164-170). Tulcea, Romania.
Dehghani, R., Chamanpira, R., & Veyskarami, I. (2024). Investigating the Effects of Climate Change on Underground Water Sources (Case Study: Khorram Abad plain).
Iranian Water Researches Journal,
18 (2).
doi: 10.22034/iwrj.2024.14796.2607
Dibike, Y. B., & Coulibaly, P. (2005). Hydrologic Impact of Climate Change in the Saguenay Watershed: Comparison of Downscaling Methods and Hydrologic Models.
Journal of Hydrology,
307 (1-4), 145-163.
https://doi.org/10.1016/j.jhydrol.2004.10.012
Feng, K., Su, x., Zhang, G., Javed, T., & Zhang, Z. (2020). Development of a new integrated hydrological drought index (SRGI) and its application in the Heihe River Basin, China.
Theoretical and Applied Climatology,
141(10), 43-59.
https://doi.org/10.1007/s00704-020-03184-6
Ghosh, A., & Bera, B. (2023). Estimation of groundwater level and storage changes using innovative trend analysis (ITA), GRACE data, and google earth engine (GEE),
Groundwater for Sustainable Development, 23, 101003.
https://doi.org/10.1016/j.gsd.2023.101003
Heydari Aghagol, M., Ghoami, E., & Rostami Barani, H. R. (2017). Finding potential groundwater resources using fuzzy logic (Case Study: South Khorasan province). Iran-Water Resources Research, 13 (1), 211-215.
Jabraili Andarian, N., Nadiri, A. A., & Gharekhani, M. (2024). Investigating the quantity and quality of groundwater and its effect on the hydrogeochemistry of the Azarshahr plain aquifer and identifying the possible source of contamination.
Hydrogeomorphology,
11(38), 60-79.
doi: 10.22034/hyd.2024.58969.1710
Jung, H., Won, J., Kang, S., & Kim, S. (2022). Characterization of the Propagation of Meteorological Drought Using the Copula Model.
Water,
14 (20), 3293.
https://doi.org/10.3390/w14203293
Karimirad, I., Ebrahimi, K., & Araghinejad, S. (2015). Investigation of climate variability impacts on multilayer aquifers (Case study: Gorgan plain).
Water and Irrigation Management,
5 (2), 261-275.
https://doi.org/10.22059/jwim.2015.57448
Khorani, A., & khajeh, M., (2014). An investigation on the coincidence between trend of drought and groundwater levels decline (A Case Study: Plain of Darab). MJSP, 18 (2) :57-80.
Kubiak-Wojcicka, K., and Bak, B., (2018). Monitoring of Meteorological and Hydrological Droughts in the Vistula Basin (Poland).
Environmental Monitoring and Assessment, Vol. 190, pp. 1-16.
https://doi.org/10.1007/s10661-018-7058-8
Kubicz, J., & Bak, B. (2019). The Reaction of Groundwater to Several Months’ Meteorological Drought in Poland.
Polish Journal of Environmental Studies,
28 (1), 187-195.
https://doi.org/10.15244/pjoes/81691
Kumar, A., Pal, L., & Yadav, S. M. (2017). Investigating Relationship between Standardized Precipitation Index and Grace-Derived Groundwater Anomalies in Madhya Pradesh, 22nd International Conference on Hydraulics, Water Resources & Coastal Engineering (HYDRO-2017), (pp. 1-8). Ahmedabad, India.
Lorenzo, M. N., Pereira, H., Alvarez, I., & Dias J. M. (2024). Standardized Precipitation Index (SPI) evolution over the Iberian Peninsula during the 21st century.
Atmospheric Research,
297: 107132.
https://doi.org/10.1016/j.atmosres.2023.107132
Maghami Moghim, G., & Taghipour, A. A. (2022). Investigating the Effective Factors on Changing Groundwater Levels of Safi Abad Plain of Esfarayneh.
Desert Ecosystem Engineering,
8 (22), 27-42. doi:
https://doi.org/10.22052/deej.2018.7.22.11
Maleki, S., Nourani, V., & Najafi, H. (2024). New Z-Number-Based Method for Specialized Groundwater Vulnerability Assessment (Case studies: The Ardabil and Qorveh-Dehgolan plains).
Hydrogeomorphology,
11(38), 98-122. doi:
10.22034/hyd.2024.59132.1713
Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for Drought Monitoring and Forecasting in a Mediterranean Climate.
Journal of Hydrology,
357 (3-4), 282-302.
https://doi.org/10.1016/j.jhydrol.2008.05.005
Meseguer-Ruiz, O., Serrano-Notivoli, R., Aránguiz-Acuña, A., Fuentealba, M., Nuñez-Hidalgo, I., Sarricolea, P., & Garreaud, R. (2023). Comparing SPI and SPEI to detect different precipitation and temperature regimes in Chile throughout the last four decades.
Atmospheric Research,
297 (13):107085.
https://doi.org/10.1016/j.atmosres.2023.107085
Mohammadi, S., Naseri, F., & Nazaripour, H. (2018). Investigating the temporal variation and meteorological drought effect on groundwater resources in Kerman plain using SPI and GRI indices.
Iranian journal of Ecohydrology,
5 (1), 11-22. doi:
https://doi.org/10.22059/ije.2017.225328.434
Niguse Dejene, I., Kabite Wedajo, G., Bayissa, Y. A., Melese Abraham, A., & Getahun Cherinet, K. (2023). Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo‑Gibe basin, Ethiopia.
Natural Hazards, Published Online 12 August 2023.
https://doi.org/10.1007/s11069-023-06127-2
Šebenik, U., Brilly, M., & Šraj, M. (2017). Drought Analysis Using the Standardized Precipitation Index (SPI).
Acta Geographica Slovenica,
57 (1), 31-49.
https://doi.org/10.3986/AGS.729
Shekari, M. R., Sadatinejad, S. J., & Vali, A. A. (2022). Relationship between meteorological and hydrogeological drought in an arid area: (a case study of Sheshdeh and Gharebolagh plains).
Desert Ecosystem Engineering,
6 (14), 79-90.
https://doi.org/10.22052/6.14.79
Tladi T. M., Ndambuki, J. M., & Salim, R.W. (2022). Meteorological drought monitoring in the Upper Olifants sub-basin, South Africa.
Physics and Chemistry of the Earth Parts A/B/C,
128 (1-2),103273.
https://doi.org/10.1016/j.pce.2022.103273
Uddameri, V., Singaraju, S., & Hernandez, E. A. (2019). Is Standardized Precipitation Index (SPI) a Useful Indicator to Forecast Groundwater Droughts? -Insights from a Karst Aquifer.
Journal of the American Water Resources Association,
55 (1), 70-88.
https://doi.org/10.1111/1752-1688.12698
Wetherald, R. T., & Manabe, S. (2002). Simulation of Hydrologic Changes Associated with Global Warming.
Journal of Geophysical Research,
107 (D19), 1-15.
https://doi.org/10.1029/2001JD001195
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM – A Decision Support tool for the Assessment of Regional Climate Change Impacts.
Environmental Modelling and Software,
17 (2), 145-157.
https://doi.org/10.1016/S1364-8152(01)00060-3
Zargar, A., Sadiq, R., Naser, B., & Khan, F. L. (2011). A Review of Drought Indices.
Environmental Reviews,
19 (1), 333-349.
https://doi.org/10.1139/a11-013