Geomorphology
Arezou Cheraghi; Shahram Bahrami; Somayeh Khaleghi; Kazem Nosrati
Abstract
Dolines are one of the most important karst landforms and play an important role in soil formation. In this study, the morphometry of dolines and their relationship with the physicochemical characteristics of soil in Noakoh anticline were evaluated. Chemical and physical characteristics of 36 soil samples ...
Read More
Dolines are one of the most important karst landforms and play an important role in soil formation. In this study, the morphometry of dolines and their relationship with the physicochemical characteristics of soil in Noakoh anticline were evaluated. Chemical and physical characteristics of 36 soil samples of dolines were collected and measured in the laboratory. Also, digital elevation model (DEM; 13 cm cell size) obtaining from UAV images, was used to measure the morphometric parameters of dolines. The results showed that large dolines have higher slope, depth and roundness, as well as sandy soils, and higher EC, pH, potassium, phosphorus, water holding capacity and soil organic carbon. Also, low- elevation dolines have large area, slope, depth, roundness and clay soils, and higher EC, PH, potassium, water holding capacity, organic carbon, and saturation percentage than high elevation dolines. The dolines located in the plunge of the anticline have large area, slope, depth, roundness and clay soils, as well as more EC, PH, potassium, water holding capacity, organic carbon and saturation percentage than the dolines in the central part. The mean of the most morphometric parameters and physicochemical characteristics of the soil in high-slope dolines is higher than in low-slope dolines. Therefore, the morphometric and pedological differences of dolines show that their formation and evolution are more at lower altitudes, plunge and steep slopes. In general, vegetation, elevation, slope and type of precipitation play an important role in morphometric differences and soils in dolines.
Geomorphology
Naimeh Rahimi; Somaiyeh Khaleghi; Alireza Salehipour Milani
Abstract
In the east of Jask City, four severe floods with high discharge occurred in the Sadij River between 2009 and 2019. This research aims to evaluate the morphological changes of the Sadij River due to the occurrence of floods over a period of 11 years and in the four significant floods during 2009, 2014, ...
Read More
In the east of Jask City, four severe floods with high discharge occurred in the Sadij River between 2009 and 2019. This research aims to evaluate the morphological changes of the Sadij River due to the occurrence of floods over a period of 11 years and in the four significant floods during 2009, 2014, 2017, and 2019. Geomorphic effects on the river were extracted using Landsat and Google Earth satellite images. GIS10.5 software and the Fluvial Corridor were used to investigate the morphological changes caused by floods in the river. The erosion and sedimentation levels were evaluated with the RNCI model. The results showed that the average width of the channel decreased by about 38 m, and the length of the river increased by about 3510 m in the floods between 2009 and 2019, corresponding to the increase in the curvature coefficient of the river from 1.40 to 1.56. According to the results of RNCI, the flood of 2019 with a discharge of 1167.73 m³ caused the highest amount of erosion compared to the other floods. Among the studied reaches, the most changes in geometrical parameters belonged to reach B
Hydrology
Mahnaz Rezaei; Somaiyeh Khaleghi; Mohammad Mahdi Hosseinzadeh
Abstract
Considering the importance of the subject, in this research, the factors affecting the hydrological changes of the Taleghan River have been investigated. Descriptive-analytical methods have been used in this research. The most important data of the research included Landsat 5 and 8 satellite images, ...
Read More
Considering the importance of the subject, in this research, the factors affecting the hydrological changes of the Taleghan River have been investigated. Descriptive-analytical methods have been used in this research. The most important data of the research included Landsat 5 and 8 satellite images, the SRTM 30-meter height digital model, Taleghan synoptic station climate information, and regional discharge information. Also, the most important tools used in the research were ArcGIS, ENVI, and SPSS. According to the subject of the study, this research has been done in several stages. In the first stage, the evaluation of land use changes, in the second stage, the evaluation of changes in climatic elements, and in the third stage, using IHA indicators, has been paid to evaluate the hydrological changes of the Taleghan River. The results of this research have shown that during the years 2000-2017, the average temperature of the region has increased and the area covered by snow has decreased. Also, under the influence of population growth, the use of artificial areas has increased and the use of gardens and pastures has decreased. Also, the total results of this research have shown that the discharge of the Taleghan River under the influence of natural and human changes, in terms of all IHA indicators, has had a significant decreasing trend. Also, among the stations in the region, the Glink station, which is located downstream of other stations, has faced more changes, which can be considered as the result of human activities and climate changes.
Somaiyeh Khaleghi; MohammadMahdi Hosseinzadeh; Payam Fathollah Atikandi
Volume 6, Issue 21 , March 2020, , Pages 43-64
Abstract
1-IntroductionOne of the methods used in river surveys is river classification. The main aim of the classification of the river is simplify the processes of hydrology and sedimentation, and ultimately predict river behavior. So far, rivers have been categorized from different perspectives and the basics ...
Read More
1-IntroductionOne of the methods used in river surveys is river classification. The main aim of the classification of the river is simplify the processes of hydrology and sedimentation, and ultimately predict river behavior. So far, rivers have been categorized from different perspectives and the basics of these categories are including topography, slope, flow discharge, river age, and pattern in the plan. The first classification Recognized by Davis in 1899. Davis classified the rivers according to their evolution and modification into three groups of young, mature, and old. Leopold and Welman (1957) divided the form of alluvial rivers based on the sinuosity coefficient and the ratio of width to Depth into three straight, meandering and braided groups. A descriptive classification by Shumm (1963) presented based on two factors of river stability and sediment transport. The objectives of this research are to identify the factors affecting the bank erosion of the Kaleybarchai River, identifying the damages incurred in the construction and banks of the river, runoff and preventing possible floods. In this research, the river classification system is based on the Rosgen method, which is presented by the American researcher Rosgen (1994) to the river engineering community. The Rosgen method is the most complete and comprehensive method provided so far and includes many of the features of previous systems. Rivers are living beings that constantly change their beds and banks, and this causes the river to undergo major changes over time. In addition, human activities, such as the utilization of riverine material and river modification, will cause the river to be moved.2-MethodologyTo evaluate the classification of the flow pattern in the Kaleybarchai River, the Rosgen model has been used at levels I, II, III. A reach of 3 km between the two villages of Pazhagh and Gheshlag was determined, and then 8 cross sections were selected in this reach. To simulate the river and extract the required parameters from geological maps, topography, land use and ARC GIS software was used. After determining the river reaches, based on field observations and topographic maps, classification in level I and level II were carried out in 8 cross-sections at the Kaleybarchai River, which are based on the slope, curvature coefficient, bankfull width, mean flood plain depth, flood plain width and bed material.3-ResultsAfter crossing the river route with field observations and then analyzing data and general calculations, 8 cross sections from the entire river course were extracted in all of the studied river and all the parameters required for classification and geometrical identification of the channel wrer calculated.In order to obtain the average size of channel material, 16 samples were taken at river in different reaches and were analzed in the laboratory (Table 2). According to the obtained data, the highest percentage of particles along the river were average sand with 26.6% and cobble up to 14.7%, which were evaluated for the Rosgen classification, according to the results, the total of river is in groups B and C.To determine the channel type at level I, after obtaining the slope of the Kaleybarchai River in the study area, four sections of the river were in type B and four sections in type C.4-Discussion and conclusionBased on morphological indices, sediment content and flow conditions, two different types of channels including B and C were identified in the study area and evaluated level according to the Rosgen in level I, II and III.Morphological study of type B in relation to the evaluation of the correspondence and efficiency of the Rosgen model showed that their dominant morphology consisted of narrow valleys with relatively low widths and moderate slopes and relatively stable banks. Type C has meandering and high sinuosity, valleys with floodplain and point bars in low slope.The high instability of the river bed in the reaches of 3, 5, 7, is a threat to the agriculture land land and surrounding buildings. Due to the fact that the braided rivers are not stable and the flow and position of the sedimentary islands and the width of this rivers are constantly changing, it is necessary to manage and organize the operations in this section with regard to the morphological variables and Flow conditions. The results of the Kaleybarchai River assessment based on the Rasgen classification system at level I, II and III showed that the Rosgen system present good the patterns of the channel in the Kaleybarchai River and, consequently, the effective parameters in the classification and separation of the channels. In this way, there are differences in the quantities and the parameters due to the specific conditions of the factors affecting in the locality.
Mohammadmehdi Hosseinzadeh; Somayyeh Khaleghi; Faraz Vahedifar
Volume 4, Issue 10 , June 2017, , Pages 145-164
Abstract
The bank erosion is the dominate phenomena in the Qaranqoo Chai River, upstream of Sahand dam, at this time of the year leading to changes in river, increasing the radius of curvature at the bends, and straight channel widening. Consequently, it damages the land and the river's facilities and causes ...
Read More
The bank erosion is the dominate phenomena in the Qaranqoo Chai River, upstream of Sahand dam, at this time of the year leading to changes in river, increasing the radius of curvature at the bends, and straight channel widening. Consequently, it damages the land and the river's facilities and causes numerous changes in the pattern of the river, sediment production, and sediment transfer to Sahand dam. In this research, a Bank Erosion Hazard Index (BEHI) was used to evaluate annual bank erosion in the Qaranqoo Chai River. To this end, 9 cross-sections were selected and some parameters such as bank full width, average bank full height, root depth, root density, bank angle, surface protection, bank material, and bank stratification were measured. The results of the BEHI method showed that both of the right and the left banks were eroded and that the erosion risk was moderate to very high in all of the right bank's cross sections except its cross-section 4 which had a very low erosion risk. In addition, the erosion risk of the left bank's cross sections were very low to extreme. Indeed, due to the low root density and loose material, the right bank's cross-sections had higher erosion risk than those of the left bank. Moreover, the erosion risk was reduced in the middle of the river because its root depth was higher than the banks' root depth. Indeed, BEHI incorporates bank variables that are factors in entrainment, surface erosion and mass erosion. These variables are bank–height ratio, root–depth ratio, weighted root density, bank angle and surface protection. Variables have empirical values that are, in turn, converted to index values and summed for a total BEHI score. Scores are adjusted by bank material and bank material stratification. BEHI scores are then categorized by erosion potentials. A greater score indicates greater erodibility. Bank height is the distance from bank toe to the top of the bank.