نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، ژئومورفولوژی، دانشکدهی علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه جغرافیای طبیعی دانشکده علوم زمین دانشگاه شهید بهشتی

3 دانشیار، گروه جغرافیای طبیعی، دانشکده‌ی علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

فرسایش تسریع شده خاک یک مشکل جدی در ایران است که منجر به تخریب منابع آب و خاک، کاهش حاصلخیزی خاک، از بین رفتن دامنه­ ها و اراضی کشاورزی، بیابان ­زایی، سیل­های مخرب، رسوب­گذاری مخازن و آلودگی زیستگاه ­های آبزیان می­شود. بنابراین مقابله با فرسایش از ضروری­ ترین اقدامات زیست محیطی می­باشد. بدین ترتیب شناخت مناطق حساس به فرسایش که سهم زیادی در تولید رسوب حوضه­ ها دارند جزء اقدامات لازم و ضروری می­باشد. به این منظور منشأیابی رسوب، به عنوان بهترین تکنیک برای تعیین سهم نسبی رسوب شناخته شده، چرا که در این تکنیک با انجام مقایسه ­ی خصوصیات ویژگی ­ها بین منابع رسوب و رسوبات تولیدی در خروجی حوضه­ ی مناطق پر خطر از نظر تولید رسوب شناسایی می­شود. پژوهشگران در استفاده از تکنیک منشأیابی رسوب، تقسیم­بندی­ های مختلفی از منابع رسوب داشته ­اند از جمله می­توان به کاربری اراضی، زمین­ شناسی، زیرحوضه‌ها، فرسایش سطحی و زیرسطحی اشاره کرد، اما مطالعات اندکی وجود دارد که منابع رسوب را براساس واحدهای فرسایش­ پذیر بررسی کند. بنابراین هدف از پژوهش حاضر تقسیم­بندی حوضه­ ی آبخیز کوهدشت به واحدهای مختلف براساس میزان فرسایش­پذیری خاک و تعیین سهم نسبی هر کدام از واحدها در تولید رسوب با استفاده از تکنیک منشأیابی رسوب بر اساس عدم قطعیت می­باشد. در اینجا میزان ذخیره­ ی کربن آلی منطقه نیز بر اساس واحدهای فرسایش­ پذیر مورد بررسی قرار گرفت. نتایج نشان داد اهمیت نسبی واحدهای فرسایش­ پذیر اول، دوم و سوم در تولید رسوب به ترتیب برابر با 08/0، 28/0 و 57/1 است.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Fingerprinting the Contribution of Soil Erodible Units to Sediment Yield and Its Relationship with Organic Carbon Stock in Kouhdasht Watershed, Lorestan Province

نویسندگان [English]

  • Foruzan Ahmadi 1
  • Kazem Nosrati 2
  • Mohamad Mehdi Hoseinzadeh 3

1 Ph.D. Student of Geomorphology, Faculty Earth Sciences, Shahid Beheshti University, Tehran, Iran

2 epartment of Physical Geography Faculty of Earth Sciences Shahid Beheshti University (SBU)

3 Associate Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

چکیده [English]

1-Introduction
Accelerated soil erosion is a serious problem in Iran, leading to degradation of soil and water resources, reduction of soil fertility, destruction of range and agricultural lands, desertification, recurring floods, sedimentation of reservoirs, and pollution of fishery habitats. Hence, understanding of the potential soil erosion process and opposition to this erosion are necessary environmental. To this end, uptake and refinement of sediment source tracing or fingerprinting techniques has expanded dramatically as an alternative approach to traditional methods of identifying key sediment sources. Sediment source fingerprinting involves discriminating potential sediment sources on the basis of differences in source material properties or tracers and determining the relative contributions of these sources to sampled target sediment. different kinds of sediment sources have been used so far in sediment fingerprinting techniques (e. g., land use, geology, sub-basins, surface and subsurface erosion) but, there is a little attention paid to the selecting the soil erodibility groups as sediment sources. Therefore, the main objective of this study are the Kouhdasht watershed dividing into

 

different erodible units based on soil erodibility index and determination of the contribution of each unit in sediment yield using an un-mixing Bayesian uncertainty model and to find its relationship with soil organic carbon stock.
 2- Methodology
Kouhdasht basin with 1138 km2 area located in  33°  17´ to 33° 41´ north latitude and 47°  20´ to 47°  50´ eastern longitude in western of Lorestan province. samples were collected in two stages; first, 81 samples in order to estimate erodibility, second, in order to determine the contribution of each source to sediment yield, 70 soil samples were collected form sources and 12 sediment samples collected at  the basin outlet.  The soil erodibility was calculated based on the soil texture and based on the geometric mean of the soil particle diameter. Based on the amount of soil erodibility, the area was divided into three different erosion units as sediment sources. To determine the contribution of sediment sources to sediment yield used fingerprinting technique is based on estimation of uncertainty.
3- Results
The erodibility of the study area varied from 0.0386 to 0.0663. Erodible units were identified as sediment sources based on the values obtained from the erosion parameter and according to the results of selecting the optimal combination of tracers. The results showed that the first erosion unit 2%, the second erodible unit 5%, and the third erosion unit 93% contributed in the region's sediment yield. The relative importance of erodible units in sediment yield was obtained by dividing the share of each resource in the production of sediment into the percentage covered by each source. The relative importance of the first, second and third erosion units is 0.08, 0.28, and 1.57, respectively. Regarding the role of organic carbon in erosion, the amount of organic carbon storage in different erosion units of the area was also measured. The amount of organic carbon storage in each erosion unit is first, second and third ones were 70.5, 64.3 and 54.6 mg / ha respectively.

 
4- Discussion and conclusion
The third unit with 93% has the largest contribution in sediment yield and with 54.6 mg / ha, it has the lowest amount of organic carbon storage in the area. Considering that this unit is most used in agriculture and geologically under quaternary sediments, showed that the parts that are under cultivation and quaternary sediments have both high erodibility and the highest contribution to sediment yield. Measurements of organic carbon storage also showed, there is the least amount of organic carbon storage in this unit and this suggests that in the third unit, the damage caused by the loss of fine sediments such as clay is higher. Given that the third unit is under agricultural use this can be attributed to the type of land use and exploitation. Therefore recommended more attention to the type of use of land and soil management and conservation programs implemented in the region.

کلیدواژه‌ها [English]

  • Erodible units
  • Fingerprinting
  • Uncertainty
  • Organic carbon storage
  • Kouhdasht basin
Reference                                                                                                        
Ballantine, D., Walling, D., Collins, A., & Leeks, G. (2009). The content and storage of phosphorus in fine-grained channel bed sediment incontrasting lowland agricultural catchments in the UK., Geoderma, Vol.151, No.3-4, 141-149.
Blanco, H., & Lal, R. (2008). Principles of soil conservation and management. New York, Springer.
Chen, F., Fang, N., & Shi, Z. (2016). Using biomarkers as fingerprint properties to identify sediment sources in a small catchment. Science of the Total Environment, 557, 123–133.
Collins, A., & Walling, D. (2004), Documenting catchment suspended sediment sources: problems, approaches and prospects. Progress in Physical Geography, Vol.28, No.2, 159-196.
Collins, A., Anthony, S., Hawley, J., & Turner, T. (2009). The potential impact of projected change in farming by 2015 on the importance of the agricultural sector as a sediment source in England and Wales, Catena. No.79, Vol.3, 243-250.
Fox, J., & Papanicolaou, A. (2008). Application of the spatial distribution of nitrogen stable isotopes for sediment tracing at the watershed scale. Hydrology, Vol. 358, No.1-2, 46-55.
Gruszowski, K., Foster, I.D.L., Lees, J., & Charlesworth, S. (2003). Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrological Processes, Vol.17, No.13, 2665-2681.
Lim, Y.S., Kim, J.W., & Kim J.W. (2019). Suspended sediment source tracing at the Juksan Weir in the Yeongsan River using composite fingerprints. Quaternary International. 519, 245-254.
Liu, B., Niu, Q., Qu, J., & Zu, R. (2016). Quantifying the provenance of aeolian sediments using multiple composite fingerprints. Aeolian Research. 22, 117–122.
Mokhtari, D., Mohamadzade, G.F., Nikju, M.R., & Asgari, Sh. (2015). Estimation of Erosion and Sediment of Gavi River Basin UsingMPSIAC Method in GIS. Hydrogeomorphology. Vol.6, No.2, PP.1-16, (In Farsi).
Mokhtari, L.G., Shafiee, N., & Rahmani, A. (2018). Estimation of Soil Erosion Using the RUSLE Model in Nourabad Mamasani Watershed. Hydrogeomorphology.Vol.16, No.5, 1-21.
Nosrati, K., Feiznia, S., Van Den Eeckhaut, M., & Duiker, S.W. (2011). Assessment of soil erodibility in Taleghan Drainage Basin Iran, using multivariate statistics, Physical Geography, Vo1.32, No.1, 78-96.
Nosrati, K., Collins, L.A., & Madankan, M. (2018). Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model. Catena. 164, 32-43.
Nosrati, K., & Collins, A.L. (2019). Investigating the importance of recreational roads as a sediment source in a mountainous catchment using a fingerprinting procedure with different multivariate statistical techniques and a Bayesian un-mixing model. Journal of Hydrology.569, 506-518.
Nosrati, K., Govers, G., Semmens, B.X., & Ward, E.J. (2014). A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma, 217-218, 173-180.
Nosrati, K. (2012). Fingerprinting based on estimation of uncertainty. Iranian water research. 9, 51-60.
Nosrati, K., Ahmadi, H., & Sharifi, F. (2013). Sediment Sources Fingerprinting: Relation between Enzyme Activities in Soil and Sediment, Water and Soil Sci.16, PP.227-237.
Poulenard, J., Perrette, Y., Fanget, B., Quetin, P., Trevisan, D., & Dorioz, J.M. (2009). Infrared spectroscopy tracing of sediment sources in a small rural watershed (French Alps), Science of The Total Environment. Vol. 407m No.8, 2808-2819.
Refahi, H. (1996). Water erosion and its control. Tehran, Tehran University.
Renard, K.G. Foster, G.R. Weesies, G. McCool, D., & Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), US Department of Agriculture.Washington, Agricultural Research Service.
Skjemstad, J.O., & Baldock, J.A. (2008). Total and organic carbon. In: Carter, M.R., Gregorich. E.G. (Eds.), Soil Sampling and Methods of Analysis, CRC Press. Taylor and Francis Group. Boca Raton, 225-237.
Smith, H.G., & Dragovich, D. (2008). Sediment budget analysis of slope–channel coupling and in-channel sediment storage in an upland catchment. southeastern Australia. Geomorphology, Vol.101, No.4, 643-654.
Six, J., Elliott, E.T., & Paustian, K. (2000). Soil structure and soil organic matter: II. A Normalized stability index and the effect of mineralogy, Soil Science Society of America Journal, Vol.64, No.3, 1042-1049.
Tiecher, T., Caner, L., Minella, J.P., Pellegrini, A., Capoane, V., Rasche, J.W.R., Schaefer, J.L., & Rheinheimer, D.S. (2017). Tracing sediment sources in two paired agricultural catchments with different riparian forest and wetland proportion in southern Brazil,Geoderma. 285, 225–239.
Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana, Geoderma, Vol.1-106, No.2, 101-120.
WCD, (2000). Dams and Development, A new framework for decision making. London, Earthscan publications Ltd.
Zhang, J., Yang, M., Zhang, F., & Li, Y. (2019). Fingerprinting sediment sources in the water-wind erosion crisscross region on the Chinese Loess Plateau. Geoderma, 337, 649–663.
Zhou, H., Chang, W., & Zhang, L. (2016). Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources. Geomorphology. 266, 11-19.