نوع مقاله : پژوهشی
نویسندگان
1 عضو هیات علمی دانشگاه محقق اردبیلی
2 دانشجوی دکتری گروه جغرافیای طبیعی، اقلیم شناسی، دانشگاه محقق اردبیلی، ایران
3 دانشجوی دکتری گروه جغرافیای طبیعی، اقلیم شناسی، دانشگاه محقق اردبیلی ، ایران
چکیده
پدیدهی خشکسالی مختص ناحیه ای خاص نبوده و مناطق مختلف جهان از آن متأثر میباشد، یکی از این مناطق، ایران در جنوب غرب آسیا میباشد که در چند سال اخیر از این پدیده رنج میبرد. هدف پژوهش حاضر مدلسازی، تحلیل و پیشبینی خشکسالی در ایران میباشد. برای این کار ابتدا پارامترهای اقلیمی: بارش، دما، ساعات آفتابی، حداقل رطوبت نسبی و سرعت باد در بازهی زمانی 29 ساله (2018- 1990) در 30 ایستگاه ایران مورد استفاده قرار گرفت. برای مدلسازی، شاخص فازی T.I.B.I ابتدا چهار شاخص (SET, SPI, SEB, MCZI) با استفاده منطق فازی در نرمافزار Matlab فازیسازی شدند و در نهایت برای پیش بینی از مدل شبکه ی عصبی مصنوعی تطبیقی Anfis بهره گرفته شد. یافته های پژوهش نشان داد شاخص فازی نوین T.I.B.I طبقات خشکسالی، چهار شاخص مذکور را با دقت بالا در خود منعکس کرد. از بین 5 پارامتر اقلیمی مورد استفاده در این پژوهش، پارامتر دما و بارش در نوسان شدت خشکسالی بیشترین تأثیر را داشت. شدت خشکسالی براساس مدلسازی صورت گرفته در مقیاس 6 ماهه بیشتر از 12 ماهه بود، بیشترین درصد رخداد خشکسالی در ایستگاه بندرعباس با مقدار (30/24) در مقیاس 12 ماهه و کمترین آن در ایستگاه شهرکرد با مقدار درصد فراوانی خشکسالی (36/0) درصد در مقیاس 6 ماهه اتفاق افـتاده است. پیشبینی خشکسالی شـاخص فازی T.I.B.I بر اساس مـدل Anfis ایستگاههای بندرعباس، بوشهر و زاهدان به ترتیب با مقدار شاخص T.I.B.I (62/0، 96/0 و 97/0) در نیمه جنوبی ایران بیشتر در معرض خشکسالی قرار گرفتند. براساس نتایج کلی پژوهش در هر دو مقیاس 6 و 12 ماهه مناطق نیمه جنوبی ایران از شدت بیشتر خشکسالی برخوردار شد که نیازمند مدیریت دقیق و کارآمد در مدیریت منایع آبی در این مناطق میباشد.
تازه های تحقیق
-
کلیدواژهها
عنوان مقاله [English]
Modelling, Analysis, and Prediction of Drought Phenomenon in Iran
نویسندگان [English]
- behrouz sobhani 1
- Leyla Jafarzadehaliabad 2
- Vahid Safarianzengir 3
1 Departement of geography
2 Ph.D. student, Dept. of physical geography, Climatology, University of Mohaghegh Ardabili,
3 3- Ph.D. student, Dept. of physical geography, Climatology, University of Mohaghegh Ardabili
چکیده [English]
1-Introduction
Drought is one of the most important natural disasters affecting agriculture and water resources, and its abundance is extremely high in arid and semi-arid regions (Shamsenya et al., 2008: 165). Drought is a natural phenomenon that has a complex process due to the interactions of various meteorological factors and occurs in all climatic conditions and in all regions of the planet (Samandianfard & Asadi, 2017). According to the domestic and foreign studies, many researchers have conducted research on drought monitoring and prediction, but the research that can show the drought phenomenon more accurately with the future vision is not takenhas not been conducted if both do not cover the issue adequately. According to the researchers, this study was conducted to model, monitor and predict drought with the new method in Iran in this study.
2-Methodology
In this study, drought modelling in Iran was carried out using climatic data of rainfall, temperature, sunshine, relative humidity and wind speed monthly (for 6 and 12 months scale) for the period of 29 years (1990-2018). At 30 stations using the new TIBI architecture model, a fuzzy set of four indicators (SET, SPI, SEB, and MCZI) valid in the World Meteorological Organization was used. For modelling the new TIBI index, the climatic data were first normalized, then four indices (SET,
SPI, SEB, and MCZI) were calculated separately and the fuzzy modelling of the four indices was performed in the Matlab software and eventually to prioritize the drought-affected areas, the multivariate decision-making model, TOPSIS was used.
3-Results
In order to investigate the effect of drought fluctuations in drought conditions of stations, it is possible to determine the changes in the indicators (SET, SPI, SEB, and MCZI) in the TIBI index analysis. Considering the large number of stations studied, For better understanding, only the drought series diagrams were presented at Bojnourd station on two 6 and 12 month scales (Figures 7 and 8),, (in the mentioned figures, the red arrow shows the drought margin at a 6-month scale with a value of 0.44 and greater, and a value of 0.76 and greater within the 12-month scale. The analysis of these forms shows that at the 6-year and 12-month scale at Bojnourd station, the amount of evapotranspiration was similar in drought conditions, which decreased from April 1994 to February 1999, and after this month an increase was observed if the impact of rainfall on a 6-month scale is weaker than the 12-month scale. It means that from May 1993 to November 1997, an increasing trend followed by the same pattern, and the indicators (SET, SPI, SEB, and MCZI) affect the TIBI index and show some trends, indicating that the new TIBI fuzzy index reflects the four indicators well. The T.I.B.I index at the 6-month scale shows a sharper shape than the scale 12.Prioritization of the stations involved in drought in Iran was analyzed using the TOPSIS model. The results of the TOPSIS model implementation using the degree of importance of the criteria derived from the entropy method indicate that, in terms of drought, more and fewer places are involved with drought by combining the two 6 and 12-month scale. According to the TOPSIS multivariate decision-making model, it was determined that the three stations most affected by drought based on the TOPSIS model were Bandar Abbas, Ahvaz and Bushehr, respectively, in the south and southwest regions of Iran with priority
points of score (1, 0.78, and 0.62 respectively), and the three stations of Gorgan, Shahrekord and Orumieh in the northern and western parts of Iran with the scores of 0.026, 0.033 and 0.035 had lower priorities for drought response, respectively (Table 6) and (Figure 11).
4-Discussion and conclusion
Drought is a natural disaster that is gradually evolving under the influence of climatic anomalies over a long period of time. In recent years, various parts of the Middle East have faced drought, including those regions of Iran in Southwest Asia. In this study, drought phenomenon was assessed at 6 and 12 months using the new fuzzy index T.I.B.I. The results of the research showed that the total frequency of droughts in the 12-month scale was more than 6 months but the severity of a 6-month-old drought is more than 12 months old. On a 12-month scale, the number of drought repetitions is more than 6 months. Drought persistence was higher at 12-month scale, droughts were shorter at short-term and affected by temperature parameter. However, the intensity of drought over a long period of time had a slower response to rainfall changes. The highest percentage of drought incidence in scale of 6 months; Bandar Abbas, Bushehr, Ahvaz and Zahedan stations in the southern half of the study area respectively with the of drought (16.62, 11.24, 14.13 and 62.6 and the lowest in the 6-month scale were Urmia and Ardebil stations, with the percentages of 1.10 and 1.88, Ilam and Yasuj with the drought frequency of 1.61 and 2.01, Rasht and Gorgan, with a high percentage of drought frequency (1.26 and 0.87) in the northern and western part of Iran. The highest percentage of drought occurrence in scale 12; Bandar Abbas and Bushehr stations respectively with drought frequency of 24.30 and 14.83, Ahvaz with drought severity of 18.47, Kerman with 6.74 percent of drought frequencies in the south and southwest of Iran and the lowest in the 6-month scale; stations of Birjand (1.70), Bojnurd (66.6), Urmia (1.17), and Tabriz (66.2) in the northwest of Iran, Rasht (0.58), Sari (0.78) in the northern part of Iran.
کلیدواژهها [English]
- Statistical evaluation
- T.I.B.I index
- Fuzitation
- Drought
- ANFIS