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basin such as topography and land use. The complex and nonlinear behavior of these
systems has led to the development of various models for simulation and prediction of
runoff. In general, the models used in this field are divided into two main categories:
conceptual models (white-box) and data-driven or machine learning-based models
(black-box). Conceptual models such as IHACRES and SWAT are developed based on
physical principles and hydrological concepts and often require data such as basin
physiography, soil type, and evapotranspiration parameters

However, each of these approaches has limitations. Despite their high interpretability,
conceptual models usually require extensive input data and may not have the desired
accuracy in predicting runoff. On the other hand, data-driven models, although capable
of identifying complex and nonlinear relationships between variables and having higher
prediction performance, lack physical interpretability. In response to these limitations,
researchers have tended to develop hybrid models that combine the advantages of the
two approaches ( In the meantime, the
IHACRES model has attracted the attention of many researchers due to its simple
structure, less need for input data, and the ability to be implemented in basins without
long-term statistics. This model was first introduced by Jakeman et al. (1990) and
includes two main components: a nonlinear module to determine effective precipitation
and a linear module to simulate the flow response. An updated version of this model
was also developed by with the aim of reducing collinearity
between parameters and improving performance under data constraints (Croke &
Jakeman 2008).
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The present study was designed and implemented in two main stages. In the first step, the semi-distributed [IHACRES
model was used to simulate the precipitation-runoff process and the model parameters were optimized using a genetic
algorithm. Next, using the model outputs and its derived variables, an XGBoost machine learning model has been
developed to increase the accuracy of daily discharge prediction. The data used in this study include daily precipitation
values, minimum, maximum, and average temperatures, as well as daily river discharge during the period 1995 to 2023.
These data were collected from the hydrometric stations of Pol-e-Kohneh and Qorbaghestan, as well as from the
Kermanshah Synoptic Meteorological Station, which are located in the Qarasu sub-basin in Kermanshah province. After
reviewing and cleaning the data, the final set was divided into two parts: 70% of the data was used for training the
model and the other 30% was used to evaluate its performance (test). These refined data formed the basis of all modeling
steps in this study. In the first step, the IHACRES model was run. This model consists of two main parts: the first part
includes the estimation of water storage using effective precipitation and approximate evaporation, which is done by
combining daily precipitation and average temperature (derived from the average of minimum and maximum
temperatures); and the second part includes modeling the delay of fast and slow runoff and converting it into the final
river flow To increase the accuracy of the simulation of the IHACRES model, the
optimization process of its parameters was carried out with a genetic algorithm. In this algorithm, an appropriate range
for each parameter was first determined based on previous experiences and trial and error. Then, by defining the
objective function based on minimizing the RMSE error, an initial population of responses was randomly generated
and by implementing the selection (tournament method), crossover (Blend) and mutation (polynomial mutation with
bounds) operators, the evolutionary process of the algorithm was run in 100 generations to achieve the best combination
of parameters. In the final stage, the XGBoost model was developed to predict daily discharge (dependent variable). In
order to fully exploit the available information, a set of derived features was generated as input to the machine learning
model. These features included lagged variables of one- to four-day discharges, sum and moving average of
precipitation and temperature in three-day and seven-day time windows, temporal indices such as sine and cosine
components of the day of the year DOY _sin and DOY _cos, season, seasonal precipitation, and the Standard Drought
Index (SPI). Also, in order to create a hybrid structure, the output of the IHACRES model was also considered as one
of the inputs of the XGBoost model. All of these features were normalized and used to train the XGBoost model. The
XGBoost (Extreme Gradient Boosting) algorithm is one of the powerful algorithms in the field of machine learning that
operates based on a set of reinforcing and sequential decision trees and improves overall performance by reducing the
residual error from previous models. This algorithm, with features such as internal regularization, tree pruning, parallel
processing, and missing data handling, has high accuracy in regression and classification problems and is resistant to
overfitting ( The training data was evaluated using 10-layer cross-validation, and the
final model performance was measured with indicators such as root mean square error (RMSE) and Nash—Sutcliffe
efficiency (NSE).

Results and Discussion

In this section, the performance of four models and techniques including basic IHACRES, basic IHACRES with 3-day
moving average (smooth ihacres), and IHACRES optimized with genetic algorithm (IHACRES-GA) and the hybrid
IHACRES—XGBoost model were compared and evaluated. The statistical indicators used to measure the performance
of the models included Nash—Sutcliffe coefficient (NSE) and root mean square error (RMSE) in the calibration and
validation periods. The NSE coefficient is usually used to evaluate the performance of rainfall-runoff models. The
results showed that the NSE value in the training period for the Pol-e-Kohne and Qorbaghestan hydrometric stations
was 0.39 and 0.4, respectively, and in the testing period it was 0.44 and 0.47. Also, the RMSE value was reported for
the Pol-e-Kohne and Qorbaghestan hydrometric stations in the training period as 29.5 and 27.1, and for the testing
period as 23.11 and 22.4, respectively. These results indicate that the performance of the IHACRES model in this study,
although acceptable, was generally weaker than expected, which was probably due to the low quality of the input data
(rainfall and temperature) and especially the low accuracy of the flow data recorded at the measurement stations, along
with short-term fluctuations and sudden peaks on a daily scale, which led to a decrease in the accuracy of the model in
reconstructing runoff. Which is consistent with the study in the Qara Su basin. To reduce the
effect of short-term fluctuations caused by unsystematic factors or measurement errors, a three-day moving average
filter was used as a preprocessing technique on the output of the basic IHACRES model. In the implementation of the
Genetic Algorithm, effective settings including population size, number of generations, crossover rate, and mutation
rate were carefully selected to establish a proper balance between convergence and population diversity. Then, the value
of the objective function, which was a combination of the statistical indicators NSE (Nash-Sutcliffe efficiency
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coefficient) and RMSE (root mean square error), was evaluated in each generation. The results of the implementation
of the GA-IHACRES model showed that the NSE value increased significantly in both training and testing periods and
at the same time the RMSE value decreased, indicating an improvement in the model's efficiency compared to the
baseline (without optimization). The use of genetic algorithm to optimize IHACRES parameters has led to a 25 to 34
percent improvement in model performance at both stations and in both training and testing stages. In the final stage of
this research, in order to improve the performance of the basic IHACRES model and overcome its limitations in
accurately simulating daily runoff, a hybrid modeling framework based on the XGBoost algorithm was used. In this
approach, the output of the IHACRES model along with a set of effective variables including precipitation data,
temperature, drought index, time components, and especially lagged flow were defined as the input of the XGBoost
model to increase the accuracy of runoff simulation by utilizing the power of this algorithm in discovering nonlinear
and complex relationships. In the design of this hybrid model, a targeted set of features was selected based on
hydrological principles and statistical analyses. Among these features, the variables Q lagl to Q lag4, which represent
the normalized runoff of the past four days, reflect the role of the watershed's hydrological memory in runoff generation.
Also, data such as discharge simulated by IHACRES (Q_sim IHACRES), SPI index, multi-day average temperatures,
and time components DOY _sin, DOY _cos, season were also included in the model to consider climatic and seasonal
aspects in flow behavior. The analysis of the importance of features using Gradient Boosting Feature Importance in the
XGBoost model clearly showed that Q lagl has the highest impact on improving runoff simulation by a large margin
compared to other variables. This finding is fully consistent with the physical logic of the hydrological system, since
the water conditions of the previous day usually determine the flow trend of the next day.

Conclusions

In this study, four different approaches including: the basic IHACRES model, IHACRES with three-day moving
average, [IHACRES optimized with genetic algorithm, and the combined IHACRES—XGBoost model were investigated
and compared to simulate daily runoff in the Gharesu watershed. Despite its simple and understandable structure, the
conceptual IHACRES model could not reconstruct peak discharges with sufficient accuracy. One of the reasons for this
was the neglect of processes such as snowmelt runoff, which has also been discussed in previous studies by Khatibi et
al. Next, in order to reduce short-term fluctuations and increase the stability of the outputs, a three-day moving average
filter was used, which led to a relative improvement in the results. Following this, optimization of the model parameters
was carried out using genetic algorithm, which led to a 25 to 34 percent improvement in the model performance in
indicators such as NSE and RMSE. This optimization played an effective role in reducing the uncertainty caused by
manual adjustments. Finally, by combining the IHACRES conceptual model and the powerful XGBoost algorithm, a
hybrid modeling framework was presented. In this structure, the output of the conceptual model along with a set of
hydrological and climatic variables such as delayed runoffs Q lagl to Q lag4, cumulative precipitation, drought index
SPI, and time components were defined as the input of the XGBoost model. This hybrid model was able to significantly
increase the accuracy of runoff modeling by utilizing the capacity of machine learning algorithms in analyzing complex
and nonlinear relationships. The analysis of the importance of features showed that variables such as Q lagl and Q lag2
play a key role in the reconstruction of runoff, which indicates the existence of hydrological memory in the flow
behavior. The results of the hybrid model at Qorbaghestan and Pol-e-Kohneh stations showed that the RMSE decreased
by more than 70% and the NSE value increased from 0.40 to 0.97, confirming the high accuracy, stability, and efficiency
of the proposed framework. Overall, this study showed that the combination of conceptual and data-driven approaches
can compensate for the limitations of each and provide a powerful tool for runoff simulation in variable climate
conditions and incomplete data. The findings are consistent with the studies of Fattahi et al. (2022) and Mohammadi et
al. (2022) who emphasize the advantage of using hybrid models. Therefore, the IHACRES—XGBoost modeling
framework can be proposed as an effective, accurate, and reliable solution for runoff prediction, water resources
management, and flood warning in semi-arid watersheds.
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Figure (1): Geographical Location of the Karkheh Basin and the Qarasu Sub-Basin
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