Alizadeh, F., Gharamaleki, A., Jalilzadeh, M. and Akhoundzadeh, A. 2020. Prediction of river stage-discharge process based on a conceptual model using EEMD-WT-LSSVM Approach, Water Resources. 47(2), 41-53.
Basak, D., Pal, S., and Patranabis, D.C.(2007). Support vector regression. Neural Inf Process, 11(2), 203-225.
Brierley GJ, Fryirs KA (2013) Geomorphology and river management: applications of the river styles framework. John Wiley & Sons.
Dehghani, R., Babaali, H.(2023). Evaluation of Statistical Models and Modern Hybrid Artificial Intelligence in Simulation of Runoff Precipitation Process. Sustain. Water Resour. Manag, 8: 154-172. https://doi.org/10.1007/s40899-022-00743-9.
Dehghani, R., Torabi Poudeh, H., Younesi, H., Shahinejad, B. 2020.. Daily streamflow prediction using support vector machine-artificial flora (SVM-AF) hybrid model. Acta Geophys. 68(7), 1763–1778 . https://doi.org/10.1007/s11600-020-00472-7.
Dehghani, R., Torabi Poudeh, H., Younesi, H., Shahinejad, B.(2020). Daily Streamflow Prediction Using Support Vector Machine-Artificial Flora (SVM-AF) Hybrid Model. Acta Geophysica,68(6): 51-66.
Dehghani, R., Torabi, H.(2021). Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Modeling Earth Systems and Environment, 6(2): 64-78. https://doi.org/10.1007/s40808-021-01253-x.
Goorani Z, Shabanlou S (2021) Multi-objective optimization of quantitative-qualitative operation of water resources systems with approach of supplying environmental demands of Shadegan Wetland. J Environ Manage 292:112769.
Kisi, O., Karahan, M., Sen, Z. (2006). River suspended sediment modeling using fuzzy logic approach. Hydrol Process, 20(2): 4351-4362.
Kohansarbaz, A., Yaghoubi, B., Shabanlou, S. Yosefvand. F.,Izadbakhsh, M.A., Rajabi, A.2024. . Simulation of monthly river flow using SVR neural network improved with population-based optimization algorithms. Model. Earth Syst. Environ. 10(4), 4525–4547 https://doi.org/10.1007/s40808-024-02040-0.
Marlia M, Syaharuddin S, Handy MRN, Subiyakto B, Ilhami MR (2022) Changes in the behavior of the riverside community of Banua Anyar Village towards river management policies. Kalim- antan Soc Stud J 4(1):48–55.
Mazraeh A, Bagherifar M, Shabanlou S, Ekhlasmand R (2024) A novel committee-based framework for modeling groundwater level fluctuations: a combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm. Groundw Sustain Dev 24:101062.
Nagy, H., Watanabe, K., Hirano, M. (2002). Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulics Engineering, 128: 558-559.
Parisouj P, Mohebzadeh H, Lee T (2020) Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States. Water Resour Manage 34(13):4113–4131.
Pijarski, P., & Kacejko, P. 2019. A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG). Engineering Optimization, 51(12):2049-2068.
Rajaee, T., Nourani, V., Zounemat-Kermani, M., Kisi, O. 2011. River suspended sediment load prediction: application of ANN and wavelet conjunction model. J Hydrol Eng, 16(2):613–627.
Sahoo, A., Singh, U. K., Kumar, M. H., & Samantaray, S. (2021). Estimation of Flood in a River Basin Through Neural Networks: A Case Study. In Communication Software and Networks (pp. 755-763). Springer, Singapore.
Sebastian, P.A., & Peter, K.V. 2009. Spiders of India. Universities press.
Shin, S., Kyung, D., Lee, S., Taik & Kim, J., and Hyun, J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(4),127-135.
Vapnik, V., Chervonenkis, A.(1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis,1(3), 283-305.
Vapnik, V.N. (1995).The nature of statistical learning theory. Springer, New York, 3(1), 250-320.
Vapnik, V.N.(1998). Statistical learning theory. Wiley, New York, 4(1), 250-320.
Wang, D., Safavi, A.A., and Romagnoli, J.A. (2000) Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal,46(4), 1607-1615.
Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2022) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Com put 38(5):4207–4219.
Zeidalinejad, N., Dehghani, R.(2023). Use of meta-heuristic approach in the estimation of aquifer's response to climate change under shared socioeconomic pathways. Groundwater for Sustainable Development, 20(4): 112-132.
Zhao G, Bates P, Neal J, Pang B (2021) Design flood estimation for global river networks based on machine learning models. Hydrol Earth Syst Sci 25(11):5981–5999.
Zounemat-Kermani, M., Kisi, O., Adamowski, J., Ramezani-Charmahineh, A. (2016).Evaluation of data driven models for river suspended sediment concentration modeling. Journal of Hydrology, 535(4), 457-472.