نوع مقاله : پژوهشی

نویسندگان

1 استاد گروه ژئومورفولوژی دانشگاه تبریز

2 فارغ التحصیل دانشگاه تبریز

چکیده

هدف پژوهش حاضر، برآورد میزان فرسایش خاک و بررسی نقش لندفرم‌ها و واحدهای لیتولوژی در فرسایش خاک حوضه آبریز زنوزچای شهرستان مرند می‌باشد. در این پژوهش برای برآورد میزان فرسایش خاک از مدل جهانی اصلاح شده هدررفت خاک (RUSLE)، سامانۀ اطلاعات جغرافیایی(GIS) و سنجش از دور (RS) استفاده شد. برای اجرای مدل عوامل فرسایندگی باران (R)، فرسایش‌پذیری خاک (K)، توپوگرافی (LS)، حفاظت خاک (P) و مدیریت پوشش گیاهی (C) در محیط Arc GIS محاسبه و سپس نقشه فرسایش خاک در 5 کلاس خطر (بسیار کم، کم، متوسط، زیاد و خیلی زیاد) ترسیم شد. برای طبقه‌بندی و ترسیم نقشه لندفرم‌ها نیز از شاخص موقعیت توپوگرافی (TPI) استفاده شد. سپس نقش لندفرم‌ها و واحدهای لیتولوژی مختلف در ارتباط با نرخ فرسایش خاک و با تلفیق نقشه‌های مربوطه بررسی شدند. نتایج اجرای مدل نشان داد که متوسط فرسایش خاک 1/71 تن در هکتار در سال است. نتایج نقشه فرسایش نشان داد که بخش عمده‌ای از حوضه (67/07درصد) جزء طبقه فرسایشی خیلی‌کم و 2/37 درصد آن در طبقه فرسایشی خیلی زیاد و زیاد قرار دارند. با تلفیق نقشه لندفرم‌ها و فرسایش خاک معلوم شد که بیشترین فرسایش در مجموع به دره‌ها و بریدگی‌های واقع بر ارتفاعات و دامنه‌ها و سپس ستیغ‌های مرتفع و قله‌ کوه‌ها اختصاص دارد. در حوضه زنوزچای، فرسایش خاک بیشتر بر روی نهشته‌های تیپ فلیش، کنگلومرای قرمز و خاکستری با میان لایه‌های مارنی و پادگانه‌های آبرفتی می‌باشد. ضریب همبستگی بین عوامل مدل (RUSLE) و فرسایش خاک نشان داد عامل توپوگرافی (LS) بیشترین اثرگذاری را در محاسبه میزان فرسایش حوضه زنوزچای دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The role of landforms and lithology in the rate of soil erosion in Zonuzchay Catchment

نویسندگان [English]

  • Fariba Karami 1
  • Davoud Mokhtari 1
  • Farnush Ahmadi 2

1 Professor of Department of Geomorphology, Faculty of Planning and Environmental Sciences. Tabriz University

2 University of Tabriz

چکیده [English]

The aim of this study is to estimate the rate of soil erosion and its relationship with landforms of Zonuzchay catchment in Marand city. In this study to estimate the rate of soil erosion and sediment production, the modified global model of soil loss (RUSEL), geographic information system (GIS) and remote sensing (RS) was used. To implement the model, rainfall erosivity factors (R), soil erodibility factor (K), slope length-gradient factor (LS), support practice factor (P), and cover-management factor (C) in Arc GIS environment calculated and Then a soil erosion map was drawn. Topographic position index (TPI) was used to classify and map the landforms of the basin. Then, the role of different landforms in relation to soil erosion rates was investigated by combining relevant maps. The results showed that the values of soil erosion in Zonuzchay basin vary between 0 and 50.20 tons per hectare per year. Valleys and cuts located on heights and slopes have the highest rate of erosion and low-slope domains and flat areas and plains include areas with low and very low erosion. In Zonuzchay basin, soil erosion is mostly on the builders of Flysch type deposits, red and gray conglomerates with Marny layers and alluvial terraces. Investigation of regression relationships between (RUSLE) model factors and soil erosion of Zonuzchay basin showed that the slope length-gradient factor has the greatest effect in calculating the rate of erosion of Zonuzchay basin. .

کلیدواژه‌ها [English]

  • RUSLE Model
  • .TPI Index
  • . lithology. Zonuzchay catchment
  • . NW Iran
Ahmadi, H. (2015). Applied Geomorphology (Water Erosion), Publications of Tehran university, pp: 688, Tehran. [In Persian]
Arabameri, A., Tiefenbacher, J.P., Blaschke, T., Pradhan, B., Tien Bui, D. (2020). Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-based Ensemble Model, Remot Sensing, 12 (874): 1-24.
Arakhi, S., Niazi, Y. (2011). Investigating application of GIS and RS to estimate Soil Erosion and Sediment Yield Using RUSLE (Case study: Upper part of Ilam Dam Watershed, Iran), Journal of Water and Soil Conversation, 17(2):1-27. [In Persian]
 
Asiedu, J. K. (2018). Assessing the Threat of Erosion to Nature-Based Interventions for Stormwater Management and Flood Control in the Greater Accra Metropolitan Area, Ghana. Journal of Ecological Engineering, 19(1).
Azizian, A., Kohi, S. (2018). Evaluating the effect of different methods for calculating topographic factor on sediment delivery rate based on RUSLE model (Case study: Barajin catchment, Qazvin), Iran-Water Resources Research, 14(5): 304-317. [In Persian]
Bagherian Kalat, A., Lashkaripour, Gh., Ghafoori, M., Abbasi, A. (2019). Investigation on effects of lithology on soil erosion and sediment yield in Sangerd Drainage Basin, Watershed Engineering and Management, 10(4): 671-685. [In Persian] 
Bahatti, M.T., Ashraf, M., Anwar, A.A. (2021). Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions, Sustainability, 13(3547):1-22.
Duarte, L., Cunha, M., Teodoro, A.C. (2021). Comparing Hydric Erosion Soil Loss Models in Rainy Mountainous and Dry Flat Regions in Portugal, Land, 10(554): 1-18.
Esfandiari Darabad, F., Mostafazadeh, R., Paseban, A. H., Nezafat Takleh, B. (2022). Integrating terrain and vegetation indices to estimate and identify the soil erosion risk Amoughin watershed, Ardabil, Journal of Spatial Analysis Environmental Hazards, 9(1): 77-96. [In Persian]
Fathizad, H., Karimi, H., Tavakoli, M. (2016). Role of Sensitivity of Erosion the Geological Formations at Erosion rate and Sediment Yield (Case Study: Sub-Basins of Doviraj River, Ilam Province), Journal of Watershed Management Research, 7(13): 193-208. [In Persian]
Habibi, A., Peyrovan, H. (2019). The Role of Geomorphic Parameters on Sediment Yield Semi-Arid, Journal of Geographic Space, 19(66): 63-75. [In Persian]
Hua, T., Zhao, W., Liu, Y., Liu., Y. (2019). Influencing factors and their interactions of water erosion based on yearly and monthly scale analysis: A case study in the Yellow River basin of China, Nat. Hazards Earth Syst. Sci. Discuss, 1-22.
Jafarzadeh Estalkhkouhi, A., Rezaei, P. (2017). Estimation of Soil Erosion in Sefidrood Watershed by Emphasis on the Role of Landforms, Journal of Applied Researches in Geographical Siences, 17(44): 201-221. [In Persian]
Jenness, J. (2006). Topographic Position Index (tpi jen.avx) extension for ArcView 3.x, v. 1.2. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/tpi.htm.
Goli Mokhtari, L., shafiei, N., Rahmani, A. (2019). The Estimation of Soil Erosion Using the RUSLE Model (Case Study: Noorabad Mamasani Basin), Hydrogeomorphology, 5(17):  1-21. [In Persian]
Karami, F., Bayati Khatibi, M. (2019). The Modeling of Soil Erosion and Prioritizing Sediment Production in Sattarkhan Dam Basin Using MUSLE and SWAT Models, Hydrogeomorphology, 6(18): 115-137. [In Persian]
Kashi Zenouzi, L., Ahmadi, H., Nazari, A.A. (2015). Using Statistical Hydrogeomorphology Method for Estimating Sediment Yield of Watersheds (Case study: Zonouz Chay and Zilber Chay watersheds), Journal of Watershed Management Research, 6(12): 166-174. [In Persian]
Kashi Zenouzi, L., Ahmadi, H., Saadat, H., Nazari, A.A., Namdar, M. (2013). Developing a Plan Map with the Aim to Control Erosion, Based on the Geomorphology Model (case study: Zonouz Chai watershed), Geography and Environmental Planning Journal, 50(2): 39-52. [In Persian]
Khaledi Darvishan, A., Faraji, J., Gholami, L., Khorsand, M.(2021). Spatio-temporal variation of soil erosion in Khamsan representative watershed using RUSLE, Watershed engineering and management, 13(3): 534-547. [In Persian]
Liu B, Xie Y, Zhang K (2001) Soil loss prediction model. China Science and Technology Press, Beijing (in Chinese).
Mahmoodi, M.A., Naghshbandi, S.P. (2020). Estimation of Soil Erosion by RUSLE and Remote Sensing Data of Gawshan Dam Basin, Journal of Water and Soil, 33(6): 845-856. [In Persian]
Maleki,A., Marabi, H., Rahimi, H.(2016). An Analysis of Topographic Position Index (TPI) in Sanandaj - Sirjan Zone and Broken Zagros Zone, Quantitative geomorphological Researches, 5(17): 129-141. [In Persian]
Mohammadi, Sh., Karimzadeh, H. R., Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model, Ecohydrology, 5(2): 551-569. [In Persian]
Mokarram, M., Darvishi, A., Negahban, S. (2017). The Relation between Morphometric Characteristics of Watersheds and Erodibility at different altitude levels using Topographic Position Index (TPI) Case Study: Nazloochaei Watershed, Scientific - Research Quarterly of Geographical Data (SEPEHR), 26(101): 131-142. [In Persian]
Renard K, Foster G, Weesies G, McCool D, & Yoder D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation RUSLE). US Department of Agriculture (Ed.). Agricultural Handbook. US Department of Agriculture, Washington, 703, 1–251.
Rosskopf, C.M., Di Iorio, E., Circelli, L., Colombo, C., Aucelli, P.P.C. 2020). Assessing spatial variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy. Int. Soil Water Conserv. Res., 8, 354–362.
Safari, A. Noori, A. A., Karami. J. (2018). Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood, Journal of Spatial Analysis Enviromental Hazard, 5(1):83-96. [In Persian]
Talebi Khiavi, H., Mostafazadeh, R., 2022. The spatiotemporal dependencies of terrain indices with soil characteristics in a steep hillslope mountainous area, Arabian Journal of Geosciences, 15: 1-18.
Taripanah, F., Ranjbar, A., Vali, A., Mokarram, M. (2022). Classification of landforms using topographic location index and assessment of their actual Soil Erosion Risk in mountainous areas (Case study: Kharestan watershed), Iranian Journal of Remote Sensing & GIS, Articles in Press, Available Online from 01 May 2022. [In Persian]
,
Vaezi, A.R., Abasi, M., Haji Maleki, Kh. (2017). Assessment of the RUSLE model integrated with RS and GIS in semi-arid small drainage areas, NW Iran, Iran-Watershed Management Science & Engineering, 11(38):1-10.
 
Wang, Z., Su. Y. (2020). Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model, sustainability, 12(1733): 1-17.
 
Weiss A. (2001). Topographic position and landforms analysis. ERSI User Conference, San Diego, USA.
 
Zeng, Ch., Wang, Sh., Bai, X., Li, Y., Tian, Y., Li, Y., Wu, L., Luo, G. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology, using RUSLE with GIS, Solid Earth Discuss, 1-27.
Zhang H, Wei J, Yang Q, et al. (2017) An improved method for calculating slope length (λ) and the LS parameters of the revised universal soil loss equation for large watersheds. Geoderma 308:36-45.