نوع مقاله : پژوهشی

نویسندگان

1 هیات علمی

2 جغرافیای طبیعی دانشگاه محقق اردبیلی

چکیده

آگاهی از تغییرات کاربری و پوشش سطح اراضی امری ضروری در برنامه‌ریزی صحیح در جهت توسعه پایدار به ‌شمار می‌آید. امروزه فناوری‌های سنجش‌ از دور به‌ عنوان عنصر اصلی در پایش کاربری اراضی و تغییرات پوشش گیاهی مورد استفاده قرار می‌گیرد. پژوهش حاضر به منظور بررسی روند تغییرات کاربری اراضی با مقایسه روش‌های پیکسل‌ پایه و شی‌گرا در تهیه نقشه کاربری ‌اراضی حوضه مردق چای با استفاده از تصاویر لندست در سال 2000 و 2020 انجام گرفت. ‌برای‌ مقایسه نتایج د‌ر ‌هر ‌د‌و ‌روش‌ از‌ د‌اد‌ه‌های‌ آموزشی‌ یکسان‌ برای‌ طبقه‌بندی‌ استفاد‌ه‌ گرد‌ید. سپس ‌روش‌های ‌ارزیابی‌ شامل‌ صحت‌ کلی‌ و‌ ضریب‌ کاپای‌ طبقه‌بندی‌ استخراج و مشخص شد که نتیجه طبقه‌بندی به روش شی‌گرا با ضریب کاپا و صحت کلی به ترتیب برابر با 89/0 و 08/91 برای سال 2000 و 92/0 و 66/93 برای سال 2020 نسبت به روش پیکسل پایه نتایج بهتری ارائه می‌دهد. بر اساس نتایج حاصله از آشکارسازی تغییرات کاربری اراضی، بیشترین میزان تغییر حادث شده مربوط به کاربری مرتع متراکم به مرتع متوسط با مقدار 448/35، کاربری خاک به مرتع متوسط با مقدار 686/27 و مرتع متوسط به مناطق مسکونی با مقدار 347/21 کیلومترمربع می‌باشد. همچنین کمترین تغییرات حادث شده مربوط به کاربری کوهستان به خاک با مقدار 015/0، مناطق مسکونی به مرتع متراکم با مقدار 023/0 و مرتع متراکم به خاک با مقدار 081/0 کیلومترمربع می‌باشد. آنچه که در نقشه‌ها بسیار واضح است کاهش بیش از حد مراتع و تبدیل آن به سایر کاربری‌ها می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detection of Land Use Changes Using Object Oriented and Pixel Base Techniques (Case Study: Mordagh Chai Basin)

نویسندگان [English]

  • Mousa Abedini 1
  • Ehsan Ghale 2

1 Associate Professor Department of Geomorphology Faculty of Literature and Humanities University of Mohaghegh Ardabili Ardabil

2 Department of physical geography, University of Mohaghegh Ardabili

چکیده [English]

1-Introduction
Due to increasing land-use changes, mainly for human activities, it is necessary to monitor vegetation changes, evaluate their trends and their environmental impacts for future planning and resource management. With the increase in population and the development of technologies, human beings are, currently, considered the most important and powerful tool of environmental change in the biosphere. Land use is the type of land use in the current situation, which includes all land uses in various sectors of agriculture, natural resources, and industry. Due to the provision of a wide and integrated view of an area, reproducibility, easy access, high accuracy of information obtained, and high speed of analysis, using satellite data is a good way to prepare a land-use map, especially in large geographical areas. One of the most widely used methods of extracting information from satellite images is classification, which allows users to generate different information. According to the type of classification method of the study area, the characteristics of the educational points get different results to separate the thematic phenomena and extract information more accurately.
2-Methodology
Mordagh River, which is known as Mordi Chai in the region, originates from the southern slope of Sahand Mountain located in East Azerbaijan and flows south. By connecting the sub-branches, it continues its way to the city of Maragheh, passes through the city of Malekan, and enters Lake Urmia. In the present study, Landsat satellite images, TM, and OLI sensors from 2000 and 2020 were used to identify the area and prepare a land-use map. To prepare for classification and processing on them, the necessary pre-processing was first done on the images. Images were pre-processed in ENVI5.3 software using the FLAASH method. Finally, ENVI5.3 software was used to classify the base pixel and eCognition Developer 64 software was used for object-oriented classification. To evaluate the classification results, the Kappa coefficient and overall accuracy were used to evaluate the classification accuracy of the maps.
 




3-Results and Discussion
According to the obtained results, it is observed that the most area in the study area in 2000 with the method of minimum distance belongs to the use of medium and dense rangeland. The lowest area for the year 2000 is the use of residential areas. In 2020, the highest area of land use is 173.875 square kilometers. The lowest area is related to the use of snow with a rate of 0.199 square kilometers and the use of residential areas, which compared to 2000, has an increase of up to 5.54 square kilometers. In the maximum likelihood method in 2000 and 2020, the highest areas are related to medium rangeland and soil uses, respectively. The lowest area for 2000 is related to vegetation and for 2020 is snow use. In addition, in the support vector machine method, the highest and lowest areas for 2000 are related to medium rangeland and vegetation uses, respectively, and for 2020, medium rangeland and snow uses have the highest and lowest areas, respectively. According to the maps obtained from the object-oriented method, the highest area in 2000 is related to medium rangeland with 156.406 square kilometers and then dense rangeland with 96.514 square kilometers. The lowest area is related to the use of residential areas with 11.141 square kilometers. In 2020, the highest area is related to the use of dense rangeland (126.907 square kilometers). In addition, the lowest area is snow use with an amount of 5.199 square kilometers.
4-Conclusions
According to the results of this study and other studies, it can be suggested that the object-oriented classification method for land-use change studies is a more appropriate and accurate method than the pixel-based method. One of the most important reasons for achieving high accuracy in the object-oriented classification method is that in this method, in addition to spectral information, information related to texture, shape, position, and content is also used in the classification process. The study of pixel-based classification showed that in selecting educational examples, the more uniform the user is and free of mixed pixels, the more accurate the classification process is. So that the land use classification and vegetation in the pixel-based method had the highest accuracy, which due to the uniform surface of both land use and homogeneous texture, the selection of training samples in these uses with the highest accuracy and have played an important role in improving overall accuracy and kappa coefficient. Based on the results of the extent of different classes related to the land use of the basin studied in 2000 and 2020, we see a decreasing trend of dense rangeland, medium rangeland, and vegetation and increasing land use of residential areas and soil. What is very clear in these maps is the excessive reduction of pastures and their conversion to other uses.

Given the growing population and the need for food and economic issues, this transformation is obvious and it cannot be said that this change can be prevented.

کلیدواژه‌ها [English]

  • Land use change
  • Pixel based classification
  • Object-oriented classification
  • Mordagh Chai
  • Northwest Iran
Barati Ghahfarokhi, S., Soltani, S., Khajeddin, S.J., & Rayegani, B. (2009). Investigation of Land Use Changes in Qale Shahrokh Basin Using Remote Sensing (1975-2002). Science and Technology of Agriculture and Natural Resources, 13, 349-365.
 
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry andRemote Sensing, 65, 2-16.
 
Dibs, H., Idrees, M.O., & Alsalhin, G.B.A. (2017). Hierarchical classification approach for mapping rubber tree growth using per-pixel and object oriented classifiers with SPOT-5 imagery. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 21-30.
 
Dixon, B., & Candade, N. (2008). Multispectral land use 2-classification using neural networks and support vector machines: one or the other, or both. International Journal of Remote Sensing, 29, 1185-1206.
 
Eskandari, S. (2019). Comparison of different algorithms for land cover mapping in sensitive habitats of Zagros using Sentinel-2 satellite image: (Case study: a part of Ilam province). Journal of RS and GIS for Natural Resources, 10(1), 72-87.
 
Feizizadeh, B., Pirnazar, M., Zand karimi, A., & Abedi Gheshlaghi, H. (2015). Assessing the Use of fuzzy Algorithms in increasing the Accuracy of Land Use Maps by object-oriented Processing Methods. Scientific-Research Quarterly of Geographical Data (SEPEHR), 24(94), 107-117.
 
Gercek, D. (2010). Object-based classification of landforms based on their local geometry and geomorphometric context, Ph.D., Department of Geodetic and Geographic Information Technologies, Supervisor: Prof. Dr. Vedat Toprak Co-Supervisor: Prof. Dr. Josef Strobl March 2010, 202.
 
Hussaina, M., Chen, D., Cheng, A., Wei, H., & Stenley, D. (2013). Change Detection from Remotely Sensed Images: From Pixel based to Object-based Approaches. Journal of Photogrammetry and RemoteSensing, 80, 91–106.
 
Jensen, J. (2005). Introductory digital image processing: A remote sensing perspective (3rd edition). Upper Saddle River, NJ: Prentice Hall. 526.
 
Karam, A., Safarian A., & Hajjah Forounia, M. (2010). Estimation and zoning of soil erosion in Mamlu Basin (East of Tehran) using modified global equation methods of soil erosion and hierarchical analysis process. Journal of Earth Knowledge Research, 1(2), 73-86.
 
Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. Remote Sensing, 25(12), 2365-2401.
 
Mokhtari, M.H., & Najafi, A. (2015). Support vector machine and artificial neural network classification methods of land use extraction of satellite images Landsat. Journal of technology of agriculture and natural resources, water and soil sciences, 19, 35-72.
Omidipour, R., Moradi, H., & Arkhi, S. (2013). Comparison of basic and object-oriented pixel classification methods in land use mapping using satellite data. Iranian Journal of Remote Sensing and GIS, 5(3), 99-110.
 
Puissant, A., Rougier, S., & Stumpf, A. (2014). Object-oriented Mapping of Urban Trees Using Random Forest Classifiers.International Journal of Applied EarthObservation and Geo information, 26, 235–245.
 
Rasooli, A. (2008). Fundamentals of Applied Remote Sensing with Emphasis on Satellite Image Processing, First Edition, Tabriz University Press, 806 pages.
 
Sabzghabaei, G., Jafarzadeh, K., Dashti, S., Yousefi Khanghah, S., & Bazmara Baleshti, M. (2017). Land use change detection using remote sensing and GIS (Case study: Qhaem shahr city). Journal of Environmental Science and Technology, 19(3), 143-157.
 
Shenani Hoveyzeh S.M, & Zarei, H. (2015). Investigation of land use changes during two decades (Case study: Abol Abbas watershed). Watershed Management Research Journal, 7(14), 237-244.
 
Shesh angosht, S., Karimi, N.A., Heidari, P., Javadi, F., & Rashtbari, M. (2015). Using time series of Landsat satellite images in estimating land use changes by object-oriented method (south of Hamadan province, Karkheh watershed). 2nd National Conference on Geospatial Information Technology Engineering, 2.
 
Shridhar, J., Prapti, D., & Alvarinho, L.A. (2015). Comprehensive Review on Pixel Oriented and Object Oriented Methods for Information Extraction from Remotely Sensed Satellite Images with a Special Emphasis on Cryospheric Applications. Advances in Remote Sensing, 4(8), 100-111.
 
Soffianian, A., & Khodakarami, L. (2011). Land Use Mapping Using Fuzzy Classification: Case Study in Three Catchment Areas in Hamedan Province. Town and Country Planning, 3(4), 95-114.
 
Teimouri, M., & Asadi Nalivan, O. (2021). Assessing the impact of land use and geology on groundwater quality using multivariate statistical models and geostatistical analyses (Case Study: Part of the Hable-Rood River Basin). Hydrogeomorphology, 7(25), 38-19.
 
Tripathi, D.K., & Kumar, M. (2012). Remote Sensing based analysis of land Use/land cover dynamics in Takula Block, Almora district (Uttarakhand). Journal of Human Ecology, 38(3), 207-212.
 
Uchechukwu, N.G., Ndukwu, R., Chukwuemeka, N.V., Chukwubueze, O., & Okwor, N.J. (2015). Comparison of Pixel Based and Object Oriented Image Classification for Mapping Urban Greenery in Uwani Enugu, From the Wisdom of the Ages to the Challenges of the Modern World Sofia, Bulgaria, 17-21 May.
 
Yaghobzadeh, M., & Akbarpour, A. (2011). The Effect of Satellite Image Classification Algorithm Based on Curve Number Runoff and Maximum Flood Discharge Using GIS and RS. Geography and Development, 9(22), 5-22.
 
Yan, G. (2003). Pixel Based and Object Oriented Image for Coal Fire Research. http://www.ITC.com (accessed in July 2008). 3-99.
 
Yari, M., Soltani-Gerdefaramarzi, S., Ghasemi, M., & Taghizadeh, R. (2020). The Effects of Land Use Change on Surface Runoff in a Part of Ghareh-su Watershed in Ardabil. Hydrogeomorphology, 6(21), 203-225.
 Yousefi, S., Tazeh, M., Mirzaee, S., Moradi, H., & Tavangar, S. (2014). Comparison of different classification algorithms in satellite imagery to produce land use maps (Case study: Noor city). Journal of RS and GIS for Natural Resources, 5(3), 67-76.