hydrogeology
Fariba Esfandyari Darabad; Zeinab Pourganji; Raoof Mostafazadeh; Maryam Aghaie
Abstract
Floods as destructive natural hazards need to be predicted in accurate way through evaluation of the hydrological response of watersheds to the effective input rainfall. Due to the variety of rainfall-runoff models, it is very important to choose a suitable model that can simulate the hydrological behavior ...
Read More
Floods as destructive natural hazards need to be predicted in accurate way through evaluation of the hydrological response of watersheds to the effective input rainfall. Due to the variety of rainfall-runoff models, it is very important to choose a suitable model that can simulate the hydrological behavior of the watershed. In this study, various rainfall-runoff transformation methods have been evaluated, including triangular, broken triangular, variable triangular and SCS-curvilinear unit hydrograph methods in Nenekaran watershed, Ardabil province. In this regard, the Wildcat5 hydrological model have been used to this purpose. The precipitation amount at the 25-year return period was calculated using Cumfreq software. After preparing the land use map of the study area using satellite images, the area of each land use in the area has been calculated using ArcGIS software. The precipitation value and the time of concentration were considered constant during the simulation procedure. The results showed that the SCS method had the highest runoff of 44.50 cubic meters per second. The minimum time to the peak was 2.19 hours and the variable triangular method had the lowest peak flow rate. The simple triangular method has a maximum time to peak of 4.51 hours, which shows the great difference between the hydrograph of the SCS method and the other three methods. The difference in the nature of the methods, the watershed condition, and the suitability of estimating tc and CN parameters should be considered in rainfall-runoff transformation methods.
hydrogeology
Mirali Mohammadi; Mahsa Mohtadi
Abstract
The purpose of present research work is to study the hydraulic properties of River Simineh and its process using HEC-RAS model, in a combination with ArcGIS software using HEC-GeoRAS extension to simulate the hydraulic parameters of river having a catchment area of 3726 km2. For that mean, since multi-dimensional ...
Read More
The purpose of present research work is to study the hydraulic properties of River Simineh and its process using HEC-RAS model, in a combination with ArcGIS software using HEC-GeoRAS extension to simulate the hydraulic parameters of river having a catchment area of 3726 km2. For that mean, since multi-dimensional models require long time and high cost in river bends, by using a combination of satellite images and HEC-RAS model a multi-dimensional simulation was prepared. Among those, 58 cross-sections are considered along the river lane that main data required in this research are elevation maps, satellite images, boundary conditions and River Simineh hydrometric stations. The results showed that at the upstream of river, the discharge was 316.3 m3/s and water level was 12.85 m, and at the downstream the flow rate and water level are 313.6 m3/s and 11.52 m, respectively. On the other side of the river bend, the water level variation is around 50 cm and the flow velocity is directly proportion to a distance from the river bank; so that the maximum flow velocity of 2.2 m/s occurred at a distance nearby 1.5 m. To verifying the model, a statistical parameter of NSE coefficient for the water level and flow depth were 0.805 and 0.845, respectively; which shows the accuracy of model. Those results indicate a high accuracy of HEC-RAS model in hydraulic simulation of River Simineh flow. Also, simulations prepared in GIS background have significant impacts on the accuracy of outputs