Zahra Sharifi; Raoof Mostafazadeh; Abazar Esmali Ouri; Zeinab Hazbavi; Mohammad Golshan
Abstract
Daily flow data are a prerequisite for water resources management, but it is not possible to measure it in many upstream watersheds. In this study, different optimization algorithms have been used to evaluate the efficiency of the SIMHYD model. Therefore, the discharge data of Kouzetopraghi rive gauge ...
Read More
Daily flow data are a prerequisite for water resources management, but it is not possible to measure it in many upstream watersheds. In this study, different optimization algorithms have been used to evaluate the efficiency of the SIMHYD model. Therefore, the discharge data of Kouzetopraghi rive gauge station was selected as the study data (805 km2) located in Ardabil province. The daily data of rainfall, evapotranspiration of the meteorological stations in the study area were used to simulate the daily river flow data. Optimization methods including genetic algorithm, comprehensive competitive evolution, search pattern, multi-start search pattern, uniform random sampling, Rosenbrook, multi-start Rosenbrook optimization were evaluated based on statistical efficiency criteria. The mean value of discharge values by genetic algorithms, multi-year pattern search, uniform random sampling, multi-start Rosenbark, Rosenbork, comprehensive competitive evolution, search pattern were 0.031, 0.023, 0.085, 0.032, 0.024, 0.032, 0.031, respectively. The results showed that the change of optimization algorithms has a significant effect on the calibration accuracy of the model, so that the values of the Nash-Sutcliffe efficiency criteria for the employed algorithms were 0.42, 0.31, -8.55, 0.38, 0.56, 0.023, and 0.24, respectively. The Rosenbrook algorithm had higher accuracy in calibrating the SIMHYD hydrological model compared to other algorithms used. A part of the modeling error can be related to the inconsistency of precipitation and runoff data due to the multiplicity of stations.
hydrogeology
Fariba Esfandyari Darabad; Zeinab Pourganji; Raoof Mostafazadeh; Maryam Aghaie
Abstract
Floods as destructive natural hazards need to be predicted in accurate way through evaluation of the hydrological response of watersheds to the effective input rainfall. Due to the variety of rainfall-runoff models, it is very important to choose a suitable model that can simulate the hydrological behavior ...
Read More
Floods as destructive natural hazards need to be predicted in accurate way through evaluation of the hydrological response of watersheds to the effective input rainfall. Due to the variety of rainfall-runoff models, it is very important to choose a suitable model that can simulate the hydrological behavior of the watershed. In this study, various rainfall-runoff transformation methods have been evaluated, including triangular, broken triangular, variable triangular and SCS-curvilinear unit hydrograph methods in Nenekaran watershed, Ardabil province. In this regard, the Wildcat5 hydrological model have been used to this purpose. The precipitation amount at the 25-year return period was calculated using Cumfreq software. After preparing the land use map of the study area using satellite images, the area of each land use in the area has been calculated using ArcGIS software. The precipitation value and the time of concentration were considered constant during the simulation procedure. The results showed that the SCS method had the highest runoff of 44.50 cubic meters per second. The minimum time to the peak was 2.19 hours and the variable triangular method had the lowest peak flow rate. The simple triangular method has a maximum time to peak of 4.51 hours, which shows the great difference between the hydrograph of the SCS method and the other three methods. The difference in the nature of the methods, the watershed condition, and the suitability of estimating tc and CN parameters should be considered in rainfall-runoff transformation methods.