Hydrogeomorphology
Mohammad Hossein Rezaei Moghaddam; Davoud Mokhtari; meysam skandarialni
Abstract
Hydrological models are an effective tool for managing water resources as well as water balance components among research works. Today, basin hydrological models have been developed, but choosing the right model to simulate a specific basin has always been a challenge. Therefore, it is necessary to choose ...
Read More
Hydrological models are an effective tool for managing water resources as well as water balance components among research works. Today, basin hydrological models have been developed, but choosing the right model to simulate a specific basin has always been a challenge. Therefore, it is necessary to choose a model that can simulate the hydrological processes with the simplicity of the structure and using minimal factors. Northwest Iran was simulated by AWBM and SWAT models. The AWBM model is an integrated model that simulates the runoff in catchment areas using two variables, rainfall and evaporation, and on the other hand, the SWAT model is a continuous and semi-distributed model that simulates hydrological processes using the physical characteristics of the basin (soil, land use, slope) as well as several water and meteorological information such as rainfall, temperature. The results of runoff simulation in the calibration and validation periods were evaluated using two Nash Sutcliffe statistical indices (NSE) and R2 coefficient of determination. By comparing the results of the statistical indicators used in the study, it was found that the SWAT model has better results in the simulation of monthly runoff in the validation and validation periods.
Groundwater
nasser jabraili andarian; Ata Allah Nadiri; Maryam Gharekhani
Abstract
Iran's groundwater reservoirs have faced significant and related challenges in the past three decades. The simultaneous decrease in the volume and quality of these waters, which are increasingly contaminated with pollutants, renders them largely unusable for many uses. Therefore, there is an increasing ...
Read More
Iran's groundwater reservoirs have faced significant and related challenges in the past three decades. The simultaneous decrease in the volume and quality of these waters, which are increasingly contaminated with pollutants, renders them largely unusable for many uses. Therefore, there is an increasing emphasis on evaluating the quality of groundwater and identifying anthropogenic or geogenic factors that affect its quality more than ever before. In this study, the hydrogeochemical pollution caused by major, minor, and trace elements was identified by examining the water table against the electrical conductivity of water resources in Azarshahr plain. Long-term data on water levels and electrical conductivity were obtained from regional water resources in East Azerbaijan province. After initial examination, 33 samples were collected from wells and qanats in the area and transferred to the water laboratory of Tabriz University for analysis. The measured parameters included pH, electrical conductivity, major, minor, and trace elements.The results of chemical analysis showed that the concentrations exceeding the permissible drinking limit for nitrates and elements such as Arsenic, Lead, Nickel, and Chromium. Piper diagrams and Stiff diagrams were used to determine the water type in the area; it was found that the water type is mainly sulfate and bicarbonate-based. The origin of the available water is related to the geological formations in the area as a result of mixing and ion exchange.Furthermore, multivariate statistical analysis using factor analysis revealed four influential factor groups affecting water quality in the area; only the fourth factor was attributed to anthropogenic. In general, most of the trace elements in water sources are influenced by formations and aquifer-rock interactions.The overall trend of groundwater quantity over a 25-year period is relatively stable with a slight downward slope; however, the general trend of electrical conductivity is ascending with a much steeper slope indicating an increase in anthropogenic activities as well as the presence of saline layers, which leads to a decrease in the quality of groundwater. Most of the contaminated samples in terms of major and trace elements are located around Gowgan city at the end of the plain. The pollution at this end is related to dissolution trends along with movement paths of groundwater flow and density of pumping wells in this area.
Sanaz Daei; Meysam Salarijazi; Khalil Ghorbani; Mahdi Meftah Halaghi
Volume 5, Issue 17 , March 2019, , Pages 145-163
Abstract
Introduction
There are many models for flood prediction that are based on different conceptual bases. The standard SCS-CN method was developed in 1954 and it is documented in Section 4 of the National Engineering Handbook (NEH-4) published by Soil Conservation Service (now called the Natural Resources ...
Read More
Introduction
There are many models for flood prediction that are based on different conceptual bases. The standard SCS-CN method was developed in 1954 and it is documented in Section 4 of the National Engineering Handbook (NEH-4) published by Soil Conservation Service (now called the Natural Resources Conservation Service), U.S. Department of Agriculture in 1956. The document has been revised several times. It is one of the most popular methods for computing the volume of surface runoff for a given rainfall event from small agricultural, forest, and urban watersheds. The method is simple, easy to understand, and useful for ungauged watersheds. The method accounts for major runoff producing watershed characteristics, viz., soil type, land use/treatment, surface condition, and antecedent moisture condition. Recent researches focus on the improvement of this model and improve its efficiency but it is necessary to evaluate the improved models for Iran's watersheds. The purpose of this study was the comparison of standard SCS-CN and developed three parameter Mishra-Singh models for flood hydrograph and peak estimation using data of five watersheds in Golestan Province.
Methodology
Study Area and Used Data
Five watersheds (including Galikesh, Tamer, Kechik, Vatana, and Nodeh) located in Golestan Province were considered to evaluate different models for flood hydrograph estimation. The characteristics of the selected watersheds are different. For Tamer, Galikesh, Kechik, Nodeh, and Vatana watersheds, the areas are equal to (1527, 401, 36, 790 and 11 km2), the parameters are (289, 139, 26, 208 and 20 km), the mean altitudes are (1131, 1358, 928, 1540 and 899 m), the mean slope of the watersheds are (19, 27, 19, 28 and 33%), the length of the main channels are (94, 58, 10, 66 and 8 km), and the number of rainfall-runoff events are (10, 13, 3, 9, and 4 cases).
Descriptions of Models
The standard curve number (SCS-CN) model was based on the following basic equations:
(1)
(2)
P is total rainfall, Q is excess rainfall, CN is curve number, Ia is initial abstraction, and S is maximum retention.
Using the concept of the degree of saturation (C=Sr), where C is the runoff coefficient (= )), Mishra and Singh (2002) and Mishra et al. (2006) modified the original SCS-CN model after the introduction of antecedent moisture Mas:
(3)
The relationships developed by Mishra et al. (2006) for Mare:
(4)
(5)
P5 is prior 5-day rainfall depth.
Three model accuracy criteria including root mean square error (RMSE), Nash-Sutcliff efficiency (NSE) and percentage error in peak (PEP) were applied to compare the results of models (Adib et al., 2010-2011).
Results
There were 39 rainfall-runoff events, of which 25 and 14 events were respectively selected for the calibration and validation steps. The parameters of investigated models for different events and watersheds and related model accuracy criteria were calculated. The root mean square error (RMSE) and Nash-Sutcliff efficiency (NSE) criteria can be used for the analysis of the flood hydrograph simulation while percentage error in peak (PEP) criteria is suitable for the analysis of the flood peak discharge simulation. In the Gallikesh watershed, for the developed three parameter Mishra-Singh and standard SCS-CN models, the RMSE criteria values were (16, 11.05, 2.8, and 10.63) and (17.94, 14 , 6.56 and 13.56), the values of NSE values were (-0.88, -84.44, -0.9 and -4.77) and (-1.37-, -1.38, -9.7, and -8.4), and the PEP values were (0.4, -1.4, 0.55, -0.3) and (0.24, -2.11, -1.39 and -0.62). For the Nodeh watershed in different events, the RMSE criteria values were (13.22, 23.57, 79.53 and 68.15) and (11.83, 22.74, 88.96 and 69.92), the NSE values were (-6.88, -2.7, -0.17 and -66) and (-5.31, -2.46, -0.46 and -69.5), and the values of PEP were (-1.19, -1.98, 0.83, -2.48) and (-1,-2.4, 0.99 and -2.57) for the developed three parameter Mishra-Singh and standard SCS-CN models were calculated. In the Tamer watershed for two models of developed three parameter Mishra-Singh and standard SCS-CN, the values of different criteria estimated as the RMSE criteria values were (13.04, 26.85, 5.9 and 19.26) and (12.04, 92.62, 5.26 and 48.81), the values of NSE criteria were (-0.92, -20.3, -4.9 and -0.14) and (-0.73, -252.5, -3.75 and -6.37), and the PEP criteria values were (0.52, -0.2, -0.8, and 0.62) and (0.62, -5.14, -0.74 and 1.09). In Vatana and Kechik watersheds for the developed three parameter Mishra-Singh model different criteria were calculated as the RMSE values (2.5) and (1.5), the NSE criteria values (0.51) and (-0.07), the PEP criteria values (0.45) and (-0.3). However, in these two watersheds for the SCS-CN standard model, the RMSE criteria values were (4.8) and (2.91), the NSE criteria values were (-0.82) and (-2.93) and the PEP criteria values were (0.95) and (0.6).
Discussion and Conclusion
The values of root mean square error (RMSE), Nash-Sutcliff efficiency (NSE) showed that the developed three parameter Mishra-Singh model improved the accuracy of the flood hydrograph estimation relative to the standard SCS-CN model for 71% of the studied events and the difference between two models for remaining 29% event was negligible. Also, the values of percentage error in peak (PEP) revealed that the three parameter Mishra-Singh model led to a decline equal to 78% in flood peak estimation in comparison with standard SCS-CN model application. In addition, the standard SCS-CN and the three parameter Mishra-Singh models were respectively 64% of and 57% of the studied cases. In this study, the accuracy of the standard SCS-CN andthedeveloped three parameter Mishra-Singh models compared the flood hydrograph and peak estimation considering data of five watersheds in Golestan Province. The investigation of the model accuracy criteria revealed that the developed model led to a considerable improvement of flood estimation in studied watersheds.
Hadi Nayyeri; Khabat Amani; Hamid Ganjaeian
Volume 3, Issue 7 , October 2016, , Pages 19-38
Abstract
Hadi Nayyeri[1]* Khabat Amani[2] Hamid Ganjaeian[3] Abstract The rivers physical and morphological properties survey and study is one of the first and most important actions in hydrological plans design and implementation. The aims of this research is Tarval drainage basin physical, hydrological, hydrographic ...
Read More
Hadi Nayyeri[1]* Khabat Amani[2] Hamid Ganjaeian[3] Abstract The rivers physical and morphological properties survey and study is one of the first and most important actions in hydrological plans design and implementation. The aims of this research is Tarval drainage basin physical, hydrological, hydrographic and hydro geomorphology's traits surveying using software and statistical methods in order to access the appropriate information's to planning and implementing the constructions and watershed management plans. Tarval stream is the Caspian Sea sub basin that its drainage basin area from confluence location with Ghezel Owzan is 6955 km2. According to present statistics from 1971 to 2011 years the annual average of meteorology and synoptic basin temperature are 12.5 centigrade degree and annual precipitation is 352 mm that shows semi-arid situation of basin climatologically. The result shown that the drainage net densities in this basin is low and the number of streams per unit area is few. By considering the study area dispersal coverage and is some cases are high-density, the runoff coefficient is 0.35 percent and the basin delay time is 1.65 hours, and its time of concentration is 2.75 hours. The results shows that by considering the factors such as precipitation rate, basin low slope, little discontinuous seed sediment, the basin runoff amount is very low and precipitation of this area speedily drops down. For this reason the soil erosion percentage in this basin is so little and be controllable. In addition, the flood debit curvy changes with time passing have a slight curve that represent the basin immunity against flooding. [1]- Assistant Professor in Dept. of Geomorphology, Faculty of Natural Resources, University of Kurdistan, (Corresponding Autor), Email:nayyerihadi@yahoo.com. [2]- Student Hydregeomorphlogy, University of Tehran. Graduate Student Hydregeomorphlogy, [3]- Student Hydregeomorphlogy, University of Tehran. Graduate Student Hydregeomorphlogy,