Hafez Mirzapour; Ali Haghizadeh; Naser Tahmasebipour; Hossein Zeinivand
Volume 6, Issue 20 , December 2019, , Pages 79-99
Abstract
1- IntroductionAccurate detection of changes land use in Accurate and timely, Basis for a better understanding of the relationships and interactions of human and natural phenomena to manage and provides better use of resources. Principal land use management requires accurate and timely information in ...
Read More
1- IntroductionAccurate detection of changes land use in Accurate and timely, Basis for a better understanding of the relationships and interactions of human and natural phenomena to manage and provides better use of resources. Principal land use management requires accurate and timely information in the form of a map. Regarding the widespread and unsustainable changes in land use, including the destruction of natural resources in recent years, Investigating how landslide changes during time periods are essential for satellite imagery. Since conservation of natural resources requires monitoring and continuous monitoring of an area, Land-use change models are now used to identify and predict land-change trends and land degradation one of the most widely used models in predicting land use change is the Auto-Markov cell model. the aim of present study is to monitor land use changes in the past years and predict changes in the coming years in Badavar-Nurabad watershed in the Lorestan province with an area of 71600 hectares. 2- MethodologyThe Markov chain method analyzes a pair of land cover images and outputs a transition probability matrix, a transition area matrix, and a set of conditional probability images. The transition probability matrix shows the probability that one land-use class will change to the others . The transition area matrix tells the number of pixels that are expected to change from one class to the others over the specified period (Ahadnejad 2010). Automatic cells are models in which adjacent and continuous cells, such as cells that may include a quadrilateral network, change their state or attributes through simple application of simple rules. CA models can be based on cells that are defined in several dimensions. The rules for changing the state of a cell from one mode to another can be either a combination of growth or decrease, such as a change to a developed cell or without development. This change is the source of the change that occurs in the adjacent cell. Neighborhood usually occurs in adjacent cells or in cells that are close together(Ghorbani et al, 2013). In order to detect land use changes in the studied area, TM , ETM+ and OLI satellite images of Landsat were used during three time periods of 1991, 2004 and 2016. After applying geometric and atmospheric corrections to images, the land use map for each year was prepared using the maximum probability method. The Kappa coefficient for the classified images of 1991, 2004 and 2016was 0.81, 0.85 And 0.90 obtained. Then, to model land use changes using the Auto-Markov cell model for 2028 horizons, First, in the Idrisi Selva software using Markov chain, the map was selected as input from the years 1991 and 2004, the 12-year prediction of the changes was considered by 2016 to determine the likelihood of a change in application. Then, using the CA-Markov method, the data from the Markov chain and the map of 2016 were used as input data for the automated-Markov cell method. 3- ResultsAssessment of the match between simulated and actual map of 2016 with 0.97 kappa index showed that this model is an appropriate model for simulating of land use change. The results from monitoring satellite imagery that in 1991 to 2016, the extent of residential areas, land is Dry farming, garden and irrigated farming land added in front of vast pastures, shrubbery and other is reduced. After verifying the model's accuracy, a 2028 map was prepared to predict the changes over the coming years. Well as the results show that the vast pastures of the forecast is reduced in the amount of 659.89hectares and 395.47 hectares will be added to the extent of irrigated farming. 4- Discussion and conclusionThe results of the Auto-Markov cell model showed that if the current trend continues, the size of the ranges will decrease sharply. Comparison of simulated map of 2016 by model and actual map with Kappa index showed that Auto-Markov cell model is a suitable model for predicting land use change and can accurately assess the future status of land use and vegetation to predict. Therefore, it is suggested protective measures and make appropriate management decisions to control non-normative changes continue to apply more than ever.
Hafez Mirzapour; Ali Haghizadeh; Rezvan Alijani; Zahedeh Heydarizadi
Volume 5, Issue 15 , October 2018, , Pages 153-169
Abstract
Abstract
Introduction
The importance of planning and managing water resources, as well as an increasing population growth and the limitation of surface water resources in the country, has made the accurate prediction of rivers' flow by using modern tools and methods of modeling, as an inevitable necessity. ...
Read More
Abstract
Introduction
The importance of planning and managing water resources, as well as an increasing population growth and the limitation of surface water resources in the country, has made the accurate prediction of rivers' flow by using modern tools and methods of modeling, as an inevitable necessity. In addition, proper river flow prediction in river management, flood warning systems, and especially planning for optimal operation is required. In order to predict the flow of a river, several methods have been developed over the past years. In general, these methods can be classified into two categories of conceptual models and models based on statistics or data. The basis of the most of the predictive methods is the simulation type of the current status of the system which is called "modeling". Considering that in most cases the conceptual models require accurate data and knowledge of processes affecting the phenomenon, and this has so far been accompanied by many problems, researchers have turned to the statistical models. Over the past four decades, time-series models have been widely used in predictive river flow as a statistical model. In each science, the collected statistics corresponding to the variable which is going to be predicted and which is available in the past periods are called time series. Indeed, a time series is a set of statistical data collected at equal and regular intervals. Statistical methods that use such statistical data are called analytical methods of time series. The basis of many decisions in hydrological processes and decisions on exploitation of water resources is according to the prediction and analysis of time series. Assessment of the temporal changes of base flow in watersheds, particularly in low flow seasons is very important.
Methodology
Time series models are represented in three main forms: self-correlated models (AR), moving average (MA) models, and self-correlated and moving average (ARMA) models. The condition of using these models is the static nature of the used data. If the data is not static, the data series must be static with the existing methods. The existence of "I" in ARIMA indicates the non-static nature of the original data and the change in the data for modeling. If the data series has a cyclic and rotational state, the type of model is seasonal or SARIMA. Time series models have two components of (p, d, q) and s (P, D, Q). S (P, D, Q) is a seasonal component. P and q are respectively autoregressive parameters and non-seasonal moving average. P and Q are autoregressive parameters and seasonal moving average. The other parameters, D and d, are differential parameters for making the time series static.
Result
The statistical and probabilistic models have been presented and developed. This study aimed to analyze and compare the performance of series 30 and 56 years and monthly average discharge related to the Kakareza River in the Selsele city and the Kashkan Afrineh River in the Poldokhtar city in Lorestan province. To this end, the first climate in this region was determined. Next, the autocorrelation function and partial autocorrelation real data draws in XLSTAT software was done. Subsequently, the data was normalized using the Box-Cox and logarithmic. Then, the data trend that indicated non-stationary was determined. After that by using the different operator in MINITAB software, the data trend was removed and the suitable model with the lowest Akaike was selected. Then both periods 12 and 24 months for the two regions were simulated. Results showed that the selected models in 12 and 24 months periods had respectively a correlation coefficient of .92 and .86 for the kakareza river and .94, .88 for the Kashkan Afrineh river.
Discussion and conclusion
The most significant difference between the observed and the simulated values is in two months of Esfand and Farvardin. In addition, due to high precipitation, there was a significant increase in the amount of discharge in Farvardin. According to the climatic conditions in the study areas, the model showed a better performance in semi-arid areas.