Fariba Esfandiyari Darabad; Rasoul Bakhshandeh; Masoud Rahimi; Khadijeh Haji; Raoof Mostafazadeh
Abstract
1-Introduction The changes in river processes due to river discharge and sedimentation as a primary principle driving force can affect the geometry of rivers. Determining the amount of sediment and floodplain and water quality study are prerequisites for river management operations. Any change in the ...
Read More
1-Introduction The changes in river processes due to river discharge and sedimentation as a primary principle driving force can affect the geometry of rivers. Determining the amount of sediment and floodplain and water quality study are prerequisites for river management operations. Any change in the steady-state of the rivers will result in physical changes in the rivers and a new reaction to the rivers' behavior. Morphological studies to determine the quantity and quality of river response will predict future river behavior. The downstream river reaches of the Hamzekhanloo River basin is one of the most important agricultural areas of Germi city due to its fertile flood plains and sufficient water availability, which has undergone many changes in recent years. In this study, the Hamzekhanloo River was investigated based on the Rosgen stream classification scheme. 2-Methodology The Hec-Ras hydrodynamic model was used to simulate the Hamzekhanloo River cross-sections and floodwater capacity. The processing of the required data for modeling purposes was performed at the ArcGIS software; the classification of stream reaches was done using the Rosgen stream classification system. Rosgen classification system predicts river behavior based on morphology and hydraulic relationship and flow sediment with specific morphology. Based on Rosgen's method, morphological characteristics of rivers are investigated at four different levels but focuses more on two levels of general geomorphic properties and morphological description. Level 1 (General Classification): Describes the morphological characteristics of the river obtained by combining information on catchment, landform, and valley morphology. Level two (descriptive classification) of the river. 3-Results and Discussion The results of the Rosgen classification scheme showed that the studied river had been classified at the C class in some river reaches, which had high flood sensitivity, high vegetation control, high sediment recovery, and sediment supply potential. Also, these reaches had narrow to wide valleys, constructed from alluvial deposition with a well-developed floodplain. Meanwhile, some sections of the study river fall in the B class according to the Rosgen classification. These reaches exist primarily on moderately steep to gently sloped terrain, resulting in narrow valleys that limit the development of a wide floodplain. These streams display a low channel sinuosity, and streambank erosion rates are normally low. The sensitivity to flooding and sediment supply is high; the influence of moderate vegetation control and recovering potential is excellent. Moreover, the cross-section patterns in the river and the parameters affecting the classification and segmentation of reaches are consistent with the overall pattern on the Rosgen classification model. 4-Conclusions The river bed of the Hamzekhanloo River is a combination of rubble, gravel, and sand. Farmers and gardeners dig the riverbed and store water to irrigate the orchard fields and gardens during the summer, and crop cultivation is observed in the river bed and floodplain. Sand mining is a common activity in the river bed to carry out the development and construction purposes of the area. Sand removal from the riverbed has led to the formation of ponds within the basin, and such alterations have altered the bed and morphology of the Hamzekhanloo River. Thus, Rosgen's model can predict the geomorphic quantification of the Hamzekhanloo River and rivers with similar conditions. This type of river channel morphological classification can be used to develop engineering designs and management implications and river restoration.
Khadijeh Haji; Shahnaz Mirzaei; Raoof Mostafazadeh; Habib Nazarnejad
Volume 4, Issue 13 , March 2018, , Pages 121-146
Abstract
Extended Abstract
Considering the relative stability of the physical characteristics of a watershed, the variability of the precipitation over space and time, and the direct relationship between rainfall and runoff, the variations of runoff can be expected and analyzed to understand the nature of variability. ...
Read More
Extended Abstract
Considering the relative stability of the physical characteristics of a watershed, the variability of the precipitation over space and time, and the direct relationship between rainfall and runoff, the variations of runoff can be expected and analyzed to understand the nature of variability. Determining changes in the amount of runoff caused by rainfall and detecting the time of rivers' floods can provide a prediction of floods' occurrence and, consequently, reduce their damages. The increasing importance of water resources management in recent years, erosion, and sediment highlights the need for understanding the rivers' behavior and regimes. Regarding the changes in the river flow rate, estimating temporal and spatial variations of runoff changes can be effective in determining and controlling the dependent processes of soil erosion in a watershed and river bank, droughts, floods, and water quality and utilization. The analysis of the river flow variability, its duration and influencing factors, is necessary for an optimal river management/operation as the main sources of water uses.
Methodology
The monthly and annual runoff volumes of different stations were calculated based on the monthly discharge data in different years during the study period. Then, the variability indices were used to study the seasonal variations in the runoff volume at each hydrometric station. Next, using Annual Distribution of Regulating Coefficient and Concentration Rate indices, the seasonal variation in runoff volume of twenty river gauge stations located in Golestan Province were evaluated in 38 years. The values of Annual Distribution of Regulating Coefficient indicated the uniformity/ non-uniformity of changes in runoff volume at the studied river gauge stations. In addition, the annual variation of runoff volume was plotted in triple diagram models based on average runoff volume and time variables. The Kriging method was also used to draw the triple diagram models using two independent variables in a surfer environment. The Annual Distribution of Regulating Coefficient and Concentration Rate indices were considered as dependent variables. The variability of the implemented indices were analyzed over a time period of 38 years.
Results and Discussion
According to discharge data in different years, the monthly and annual runoff volumes of the stations were calculated during the study period. Based on the monthly spatial distribution, the results showed that the maximum amount of runoff volume of the stations were observed in March. The highest amount of surface runoff amounts occurred in Aghghala, Ghazagli, and Basirabad which respectively had an average annual runoff of 33.9, 33.5, and 32.6 million cubic meters. The highest uniformity in runoff occurrence was related to Nodehkhandoz, Tamar, Galikesh, and Gholitappeh stations, respectively with an annual Distribution of Regulating Coefficient of 0.19, 0.21, 0.23, and 0.24. The lowest Rate of runoff concentration was at Nodehkhandoz and Tamar stations respectively with 0.26% and 0.25%. The results also indicated a direct and significant relationship (R2 = 0.60) between Annual Distribution of Regulating Coefficient and Concentration Rate (p < .05). Ramian station had the highest Concentration Rate with a value of 0.62%. The highest significant decreasing and increasing trends, in Mann-Kendall test, were observed at Shirabad and Nodehkhandoz stations
Conclusions
According to the findings, there was a correlation between the annual distribution of regulating coefficient and the concentration rate. The higher values of the Annual Distribution of Regulating Coefficient and the Concentration Rate of runoff volume can be attributed to physiographic properties of watershed such as its slope, vegetation, and soil permeability. In other words, the process of changes in the runoff volume at these stations can indicate the temporal and spatial variations of precipitation, human protection measures such as dam construction in the basin, or the amount of permeability during the statistical period. In conclusion, with the non-uniform distribution of runoff volume in different months of the year, it can be expected that variations between the minimum and maximum values of runoff volume will also be high. Indeed, the higher the uniformity of the monthly distribution of runoff volume, the lower the variations between the minimum and maximum changes in the runoff volume. Variations in the amount of monthly runoff in the studied area can be related to the characteristics of the area, the hydrological response, and land use (agricultural land plowing season), as one of the main factors controlling runoff.