Geomorphology
Saeid Roustami; Babak Shahinejad; Hojatolah Younesi; Hassan Torabipoudeh; Reza Dehghani
Abstract
Flood is one of the natural phenomena that causes a lot of human and financial losses in the world every year and creates many problems for the economic and social development of countries. Therefore, in order to reduce the damage, control and guidance of this phenomenon, estimating flood discharge and ...
Read More
Flood is one of the natural phenomena that causes a lot of human and financial losses in the world every year and creates many problems for the economic and social development of countries. Therefore, in order to reduce the damage, control and guidance of this phenomenon, estimating flood discharge and identifying the factors affecting it is very important. In this study, in order to estimate the flood discharge of Kashkan catchment located in Lorestan province, new hybrid artificial intelligence models including artificial neural network - innovative gunner, artificial neural network - black widow spider and artificial neural network - chicken crowding during the period 1300-1400 were used. To evaluate the simulation performance, statistical indices of determination coefficient (R2), absolute mean error (MAE), Nash-Sutcliffe productivity coefficient (NSE), bias percentage (PBIAS) were used. The results showed that hybrid artificial intelligence models improve the performance of the single model. The results showed that the artificial neural network- innovative gunner model has more accuracy and less error than other models. Overall, the results showed that the use of hybrid artificial intelligence models is effective in estimating flood discharge and can be considered as a suitable and rapid solution in water resources management.
hassan torabipodeh; Babak Shahinejad; Reza Dehghani
Volume 5, Issue 14 , June 2018, , Pages 179-197
Abstract
Background and Objective
Drought is one of the phenomena of climate that occurs in all climatic conditions and in all parts of the planet. Drought prediction has an important role in designing and managing natural resources, water resource systems, and determining the plant's water requirement. For ...
Read More
Background and Objective
Drought is one of the phenomena of climate that occurs in all climatic conditions and in all parts of the planet. Drought prediction has an important role in designing and managing natural resources, water resource systems, and determining the plant's water requirement. For estimating drought, various approaches have been introduced in hydrology that artificial models are the most important ones. In this study for evaluating the accuracy of the models in estimating the 12-month standard rainfall index, monthly data from four weather stations in Boroujerd, Dorood, Selseleh and Dolphan in Lorestan province have been used. For modeling of drought in these stations utilized wavelet neural network and artificial neural network models and the results were compared to each other for the accuracy of the studied models. In a few studies, each of the models presented in the drought estimation has been studied. But the purpose of this research is simultaneous analysis of these models at four stations for estimating the standard rainfall index.
Methods
In this study, Boroujerd, Dorood, Selseleh and Dolphan that located in Lorestan province have been selected as the study area During the statistical period, the precipitation parameter was used at monthly time scale (1962-1372) for input and standard rainfall index as the output parameter of the models. For this purpose, at first 80% of the data (1372-1382) were selected for calibration of the models and 20% of the data (2012-2013) were used to validate the models. The wavelet neural network, which has a very good fit with the sinusoidal equations by separating the signal into high and low frequencies, can greatly increase the accuracy of the model and reduce noise. Artificial neural networks are inspired by the brain information processing system that ability to approximate patterns of a model has increased the scope of these networks. Correlation coefficient, root mean square error and mean absolute error value were used for evaluation and performance of the models.
Results
The results showed that both models have good performance in estimating the standard rainfall index in the four stations studied. Also, according to the evaluation criteria, the wavelet neural network model was found to have the highest accuracy and low error rate compared to the artificial neural network model.
Conclusions
In total, the results showed that the use of wavelet neural network model can be effective in estimating the standard rainfall index. also It can be useful in facilitating the development and implementation of management strategies to prevent drought and is a step in making managerial decisions to improve water resources.