Reza Aghayari Samian; Ali Mohammad Khorshid Doust; Saeed Jahanbakhsh Asl; Aida Hosseini Baghanam
Abstract
The aim of this study was to predict changes in temperature, precipitation and evaluate the effects of climate change on the status of surface runoff in the Aras catchment. Climatic conditions were simulated in LARS-WG software environment under RCP8.5 scenario. Using the modified Trent White experimental ...
Read More
The aim of this study was to predict changes in temperature, precipitation and evaluate the effects of climate change on the status of surface runoff in the Aras catchment. Climatic conditions were simulated in LARS-WG software environment under RCP8.5 scenario. Using the modified Trent White experimental model, the amount of potential evapotranspiration was estimated for both observation and simulation periods. To ensure the validity of the model, the mean error orthography (RMSE), and the determination coefficient and Nash-Sutcliffe efficiency coefficient (ENS) were used. Also, modeling of surface runoff changes in GIS software environment and SWAT plugin was performed. After forming hydrological units (HRU), the baseline model for surface runoff changes was selected to calibrate and validate the model. The results show that by modeling climatic data during the simulation period, the amount of temperature, evapotranspiration and transpiration will increase, and in contrast, the amount of precipitation has occurred and the flow rate will decrease superficially. The results of validation showed that the accuracy of the model in the selected stations was high and for the precipitation parameter due to its discontinuous nature, the correlation between the data is less than the temperature parameter and different. The results of hydrometric modeling of the basins showed that the Nash-Sutcliffe value is close to 1 and the correlation coefficient between the data is 0.99, which indicates the high efficiency of the model for simulating and estimating climate change and its effects on surface runoff.
Saeed Jahanbakhsh Asl; Alimohammad Khorshiddoust; Mohammad Hossein Alinejad; Farnaz Pourasghr
Volume 3, Issue 7 , October 2016, , Pages 107-122
Abstract
Saeed Jahanbakhsh Asl[1]* Alimohammad Khorshidoust [2] Mohammad Hossein Aalinejad[3] Farnaz Pourasghar[4] Abstract Temperature and precipitation are two important parameters in hydrology and water resources. The impact of climate change on these two parameters has been the subject of many studies and ...
Read More
Saeed Jahanbakhsh Asl[1]* Alimohammad Khorshidoust [2] Mohammad Hossein Aalinejad[3] Farnaz Pourasghar[4] Abstract Temperature and precipitation are two important parameters in hydrology and water resources. The impact of climate change on these two parameters has been the subject of many studies and studying atmospheric general circulation models is one of the best methods to estimate its effects. In the studies of climate change, lack of uncertainty in various stages of evaluation for the effect of climate change reduce certainty and confidence of the final outputs. In this study for analyzing the effects of climate change on precipitation and temperature in Shahrchay basin and the effects of the uncertainty related to general circulation models, six atmospheric general circulation model and 3 scenarios, A1B, A2 and B1 were downscaled by using LARS-WG. For evaluating the uncertainty of the models and scenarios, the output of models in the future and based period were compared by monthly statistical indices, coefficient of determination (R2) and Root Mean Square Error (RMSE) and the best models and scenarios for producing temperature and precipitation data were selected for the period 2011-2030. As the results, the HADCM3 model under scenarios A1B was used for precipitation and the MPEH5 under scenarios A2 for temperature production. The results of this research showed that in the future period rainfall will be reduced about 9 millimeter, while the minimum and maximum temperature will increase 1.05 and 0.87 °C respectively. Disruptions of rainfall distribution and high temperature have significantly negative consequences than rainfall reduction. [1]- Professor in Department of Meteorological, University of Tabriz, (Corresponding Autor), Email:s_jahan@tabrizu.ac.ir. [2]- Professor in Department of Meteorological, University of Tabriz. [3]- Meteorological Graduate Student of Tabriz Universit, Email:aalineghad63@yahoo.com. [4]- Climatology Ph.D., Meteorology Directorate General of East Azerbaijan Province.