hydrogeology
maryam bayatikhatibi; Faeze Rostami; Khalil Valizadeh Kamran
Abstract
In the Drastic model, the vulnerability index was obtained from 57 to 165, which is in the descriptive division into classes without risk to high risk of pollution, which if we consider three classes without risk of pollution to low pollution, we can say 44% of the total area of the plain is located ...
Read More
In the Drastic model, the vulnerability index was obtained from 57 to 165, which is in the descriptive division into classes without risk to high risk of pollution, which if we consider three classes without risk of pollution to low pollution, we can say 44% of the total area of the plain is located on these three classes. Also, three classes of low to high, occupy 46% of the plain area. In fuzzy modeling, after scaling and overlapping seven input layers, we prepared the final map, which according to the index of this modeling, 47% of the total area of the plain has high vulnerability, that the result obtained is very similar to the result of DRASTIC method, but by comparing the two methods, it becomes clear that the fuzzy model is more accurate than the drastic method. In both maps, the northwestern to southwestern parts where the city of Tabriz is located, have the highest potential for pollution and the southwestern parts, which include the Sahand Mountains, have the lowest potential for pollution. Finally, using GQI index and according to drinking standard WHO and using ten parameters: hydraulic conductivity, chlorine, calcium, bicarbonate, magnesium, potassium, total soluble solids, sodium, sulfate and total hardness which are taken from wells in the plain, In high-risk areas, due to the high percentage of total soluble solids, total hardness and high hydraulic conductivity, water quality has also decreased and descriptively, the water quality of Tabriz plain is in the acceptable to appropriate range.