Groundwater
nasser jabraili andarian; Ata Allah Nadiri; Maryam Gharekhani
Abstract
Iran's groundwater reservoirs have faced significant and related challenges in the past three decades. The simultaneous decrease in the volume and quality of these waters, which are increasingly contaminated with pollutants, renders them largely unusable for many uses. Therefore, there is an increasing ...
Read More
Iran's groundwater reservoirs have faced significant and related challenges in the past three decades. The simultaneous decrease in the volume and quality of these waters, which are increasingly contaminated with pollutants, renders them largely unusable for many uses. Therefore, there is an increasing emphasis on evaluating the quality of groundwater and identifying anthropogenic or geogenic factors that affect its quality more than ever before. In this study, the hydrogeochemical pollution caused by major, minor, and trace elements was identified by examining the water table against the electrical conductivity of water resources in Azarshahr plain. Long-term data on water levels and electrical conductivity were obtained from regional water resources in East Azerbaijan province. After initial examination, 33 samples were collected from wells and qanats in the area and transferred to the water laboratory of Tabriz University for analysis. The measured parameters included pH, electrical conductivity, major, minor, and trace elements.The results of chemical analysis showed that the concentrations exceeding the permissible drinking limit for nitrates and elements such as Arsenic, Lead, Nickel, and Chromium. Piper diagrams and Stiff diagrams were used to determine the water type in the area; it was found that the water type is mainly sulfate and bicarbonate-based. The origin of the available water is related to the geological formations in the area as a result of mixing and ion exchange.Furthermore, multivariate statistical analysis using factor analysis revealed four influential factor groups affecting water quality in the area; only the fourth factor was attributed to anthropogenic. In general, most of the trace elements in water sources are influenced by formations and aquifer-rock interactions.The overall trend of groundwater quantity over a 25-year period is relatively stable with a slight downward slope; however, the general trend of electrical conductivity is ascending with a much steeper slope indicating an increase in anthropogenic activities as well as the presence of saline layers, which leads to a decrease in the quality of groundwater. Most of the contaminated samples in terms of major and trace elements are located around Gowgan city at the end of the plain. The pollution at this end is related to dissolution trends along with movement paths of groundwater flow and density of pumping wells in this area.
hydrogeology
Zahra Sedghi; Ata Allah Nadiri; Sina Sadeghfam; Somayeh Asadi; Frank Tsai
Abstract
Nitrate is one of the pollutants of drinking water sources in the Maku-Bazargan-Poldasht region as a result of human and agricultural activity. Investigations show that the maximum nitrate content in the water resources of the Maku-Bazargan-Poldasht region has increased from 33 mg/liter to 167 mg/liter ...
Read More
Nitrate is one of the pollutants of drinking water sources in the Maku-Bazargan-Poldasht region as a result of human and agricultural activity. Investigations show that the maximum nitrate content in the water resources of the Maku-Bazargan-Poldasht region has increased from 33 mg/liter to 167 mg/liter at the regional level since 2000, or 15 years ago. Is. This area's drinking water is sourced from a variety of poorly maintained wells, springs, aqueducts, and surface water bodies. The results of this analysis, which collected samples from a number of water sources, show the area's high level of water source pollution. This study is the first to assess the carcinogenic risk of nitrate, which is present at high amounts in the study area. This study is the first to assess whether nitrate, nitrite, and ammonium are carcinogenic due to the high amounts of nitrogen compounds in the study area. The goal of the current study was to evaluate the levels of nitrate, nitrite, and ammonium in the drinking water sources of the Maku-Bazargan-Poldasht region and investigate any potential health issues related to nitrate and nitrite. This was done in compliance with USEPA regulations. An effort was made in this study to present a nitrogen compound risk map that is not carcinogenic, and if such a risk exists, future research by scientists should focus on it and determine the best course of action.
Hydrogeomorphology
Fatemeh Novin Sarandi; Ghodrat Barzeghari; Mahdi Ojaghi; Nasir Nouri
Abstract
Hajilar chai basin located in the western part of varzegan and it may expose to potential of water resources contamination due to placement of Zarrin Dagh Astarkan gold extraction factory in this area. In order to monitor the water sources of the Hajilar chai basin, 12 water samples collected and analyzed ...
Read More
Hajilar chai basin located in the western part of varzegan and it may expose to potential of water resources contamination due to placement of Zarrin Dagh Astarkan gold extraction factory in this area. In order to monitor the water sources of the Hajilar chai basin, 12 water samples collected and analyzed in March 2021. The results showed that the concentration of Co, Pb and As are higher than permissible limit of WHO standard for drinking water in some places and probably the source of trace element related to geological formations and water rock interaction. The aim of this study is to evaluate the hydrchemical characteristics and source of contamination of water sources using graphical methods, multivariate statistical techniques such as factor analysis and hierarchical cluster analysis. The result of the graphical methods showed that the most of the water samples have bicarbonate calcium dominate type. The result of the factor analysis show that four factors were affecting the quality of water source. The first, third and fourth components result from affecting of formation on water resources and water rock interaction. The second component show evidences of the anthropogenic activities in the study area. Also, hierarchical cluster analysis classifies the data into three categories. The first cluster data have similar geochemical process and less trace element. In second cluster hydrochemcial equilibrium is not established, which is probably due to the impact of factory activities. In third cluster, the concentration of arsenic is high and probably is originated from geological formation.
Ata Allah Nadiri; Saeed Yousefzadeh
Volume 4, Issue 10 , June 2017, , Pages 21-40
Abstract
An accurate estimation of the hydrogeological parameters such as hydraulic conductivity, which is essential for careful management and protection of groundwater resources, is an important part of hydrogeological studies. Various field and laboratory methods, generally done using hydrogeological data, ...
Read More
An accurate estimation of the hydrogeological parameters such as hydraulic conductivity, which is essential for careful management and protection of groundwater resources, is an important part of hydrogeological studies. Various field and laboratory methods, generally done using hydrogeological data, have already been proposed for estimating hydraulic conductivity. One of the best and the most complete methods is the field pumping test which is very time-consuming and expensive. In addition, hydrogeological parameters estimated by it have an inherent uncertainty. In this study, we tried to use artificial intelligence methods, widely considered in recent years, such as artificial neural network (ANN), mamdani fuzzy logic(MFL), sugeno fuzzy logic(SFL), and adoptive neuro-fuzzy inference system (ANFIS) for the estimation of the hydraulic conductivity. In this study, for the accurate estimation of the hydraulic conductivity in Maraghe-Bonab plain by these models, geophysical and hydrogeological data were used as models' inputs. Their results were compared with the evaluation criteria, and the best model based on the RMSE was selected. Accordingly, the ANFIS model, compared to other models, with an RMSE of 1.12 in the test phase has high power in the estimation of the hydraulic conductivity. Radius of clustering, number of fuzzy rules, and number of clusters are very important in fuzzy and neuro-fuzzy models. Radius of clustering in the ANFIS model, based on the minimum RMSE amount, was equal to 0.4 and the numbers of clusters, based on if-then fuzzy rules, was 9. The methods presented in this study, which demonstrated superior performance in estimating hydraulic conductivity of Maragheh-Bonab plain, can be used in estimating hydraulic conductivity of other plains with similar hydrogeological conditions.