Bromand Salahi; Mahdi Foroutan
Abstract
Monitoring the changes and fluctuations of precipitation in geographical areas can give a better view of the behavior of this phenomenon in the coming years. The purpose of this research is to investigate the precipitation situation in Ardabil Plain (Ardabil, Bileh-Daragh, and Kolour stations) and forecast ...
Read More
Monitoring the changes and fluctuations of precipitation in geographical areas can give a better view of the behavior of this phenomenon in the coming years. The purpose of this research is to investigate the precipitation situation in Ardabil Plain (Ardabil, Bileh-Daragh, and Kolour stations) and forecast it in the coming years based on the output of CMIP6 models by the CMhyd downscaling model. Then, using R2, MAE, MSE, RMSE, and Taylor diagram, the observational data of the base period were compared with the historical data of 5 GCM models from CMIP6, and the best model was selected for each studied station. The output of the top models was corrected for skewness by linear scaling method and based on SSP126, SSP245, and SSP585 scenarios, the precipitation of 2050-2023 for each station, forecast, and its trend were drawn with the Mann-Kendall statistic. The results showed that in the eastern and western areas of Ardabil Plain (leading to the heights of Talesh and Sablan mountains), the rainfall changes were increasing (2.80 mm). In the Ardabil station, the MIROC6 model with a correlation coefficient of 0.94%, and in Bileh-Daragh and Kolour stations, the MPI-ESM1-2-HR model with a correlation coefficient of 0.88% and 0.92%, respectively, have the highest accuracy in simulating the precipitation. Also, the results of the scenarios showed that the precipitation changes in Ardabil station in the future period compared to the base period under the SSP126, SSP245, and SSP585 scenarios will be 0.24, -6.36, and -2%, respectively.