Geomorphology
hojatolah younesi; ahmad godarzi; Masoud Shakarami
Abstract
Today, hybrid models of artificial intelligence are considered as a suitable method for simulating hydrological phenomena, including quantitative estimation of river flow. For this purpose, there are various approaches in hydrology to estimate the flow rate of rivers, of which artificial intelligence ...
Read More
Today, hybrid models of artificial intelligence are considered as a suitable method for simulating hydrological phenomena, including quantitative estimation of river flow. For this purpose, there are various approaches in hydrology to estimate the flow rate of rivers, of which artificial intelligence models are the most important. Therefore, in this study, the performance of support vector-wavelet regression, backup vector-gray wolf regression and bat-support vector regression models to simulate the flow of Kashkan river located in Lorestan province during the statistical period of 2010-2011 in the daily time scale were analyzed. The criteria of correlation coefficient, root mean square error and mean absolute value of error and bias were selected for evaluation and performance of the models. The results showed that the hybrid models have acceptable results in simulating the river discharge. Comparison of models also showed that the support-wavelet vector regression model in the validation stage showed values of R2 = 0.960, RMSE = 0.045, MAE = 0.024, NS = 0.968 and BIAS = 0.001 in predicting daily river flow. . Overall, the results showed that the use of hybrid support-wavelet regression model can be useful in predicting daily discharge.