نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه گرگان

3 استادیار گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

4 استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه

چکیده

چکیده
تحلیل تغییرات رژیم جریان و تداوم آن و تعیین عوامل مؤثر در بی‌نظمی‌ها از پیش‌نیازهای اصلی مدیریت و بهره‌برداری بهینه از رودخانه‌ها به‌ عنوان یکی از منابع اصلی آب مصرفی می‌باشند. در این پژوهش میزان تغییرات ماهانه حجم رواناب در 20 ایستگاه‌ هیدرومتری واقع در استان گلستان در یک دوره­ی 38 ساله (۱۳۵۳-۱۳۹۱) با استفاده از شاخص تغییرات سالانه (ضریب تعدیل توزیع سالانه و شدت تمرکز) مورد ارزیابی قرار گرفت. براساس داده‌های ماهانه دبی در سال‌های مختلف، حجم رواناب ماهانه و سالانه­ی ایستگاه‌های مورد مطالعه در طول دوره­ی آماری محاسبه گردید. هم‌چنین روند شاخص تغییرات سالانه با استفاده از آزمون من-کندال مورد تجزیه و تحلیل قرار گرفت. نتایج پژوهش نشان داد که از نظر توزیع ماهانه، حداکثر مقادیر حجم رواناب ایستگاه‌ها در فصل بهار و خصوصاً در ماه فروردین اتفاق افتاده است که با مقادیر بالای بارش بهاره و اثر آن در میزان آبدهی بالای رودخانه‌ها در این فصل در ارتباط بوده است. هم‌چنین، بیش‌ترین مقادیر حجم رواناب در ایستگاه‌های آق‌قلا، قزاقلی و بصیرآباد به‌ترتیب دارای متوسط حجم رواناب سالانه (9/33، 5/33 و 6/32 میلیون مترمکعب) می‌باشند. در حالی‌که بیش‌ترین یکنواختی در وقوع رواناب در ماه‌های سال مربوط به ایستگاه‌های نوده‌خاندوز، تمر، گالیکش و قلی‌تپه به‌ترتیب با مقادیر ضریب تعدیل توزیع سالانه برابر 19/0، 21/0، 23/0 و 24/0 درصد بوده است. کم‌ترین شدت تمرکز رواناب نیز مربوط به ایستگاه‌های نوده‌خاندوز و تمر به‌ترتیب برابر با مقادیر 26/0 و 25/0 درصد می‌باشند، در صورتی‌که ایستگاه‌ رامیان (با مقدار شاخص 62/0 درصد) دارای بیش‌ترین شدت تمرکز بوده است. نتایج حاکی از رابطه­ی مستقیم و معنی‌دار میان ضریب تعدیل توزیع سالانه­ی دبی و شاخص شدت تمرکز با ضریب همبستگی 60/0 می‌باشد. بنابراین بیش‌ترین روند کاهشی و افزایشی در طول دوره­ی آماری با استفاده از آزمون من-کندال به‌ترتیب در ایستگاه‌های شیرآباد و نوده‌خاندوز در سطح معنی‌دار 05/0 مشاهده شده‌اند.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

The Monthly Changes of Surface Runoff Intensity and Concentration in the Gorgan-Roud River, Golestan Province

نویسندگان [English]

  • Khadijeh Haji 1
  • Shahnaz Mirzaei 2
  • Raoof Mostafazadeh 3
  • Habib Nazarnejad 4

1 Sc. Graduate of Watershed Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

2 Ph.D Candidate, Department of Watershed Management Engineering, Faculty of Agriculture Sciences and Natural Resources,Gorgan University

3 Assist. Prof., Natural Resources Dept., Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

4 Assistant Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University

چکیده [English]

Extended Abstract
Considering the relative stability of the physical characteristics of a watershed, the variability of the precipitation over space and time, and the direct relationship between rainfall and runoff, the variations of runoff can be expected and analyzed to understand the nature of variability. Determining changes in the amount of runoff caused by rainfall and detecting the time of rivers' floods can provide a prediction of floods' occurrence and, consequently, reduce their damages. The increasing importance of water resources management in recent years, erosion, and sediment highlights the need for understanding the rivers' behavior and regimes.  Regarding the changes in the river flow rate, estimating temporal and spatial variations of runoff changes can be effective in determining and controlling the dependent processes of soil erosion in a watershed and river bank, droughts, floods, and water quality and utilization. The analysis of the river flow variability, its duration and influencing factors, is necessary for an optimal river management/operation as the main sources of water uses.
Methodology
The monthly and annual runoff volumes of different stations were calculated based on the monthly discharge data in different years during the study period. Then, the variability indices were used to study the seasonal variations in the runoff volume at each hydrometric station. Next, using Annual Distribution of Regulating Coefficient and Concentration Rate indices, the seasonal variation in runoff volume of twenty river gauge stations located in Golestan Province were evaluated in 38 years. The values of Annual Distribution of Regulating Coefficient indicated the uniformity/ non-uniformity of changes in runoff volume at the studied river gauge stations. In addition, the annual variation of runoff volume was plotted in triple diagram models based on average runoff volume and time variables. The Kriging method was also used to draw the triple diagram models using two independent variables in a surfer environment. The Annual Distribution of Regulating Coefficient and Concentration Rate indices were considered as dependent variables. The variability of the implemented indices were analyzed over a time period of 38 years.
Results and Discussion
According to discharge data in different years, the monthly and annual runoff volumes of the stations were calculated during the study period. Based on the monthly spatial distribution, the results showed that the maximum amount of runoff volume of the stations were observed in March. The highest amount of surface runoff amounts occurred in Aghghala, Ghazagli, and Basirabad which respectively had an average annual runoff of 33.9, 33.5, and 32.6 million cubic meters. The highest uniformity in runoff occurrence was related to Nodehkhandoz, Tamar, Galikesh, and Gholitappeh stations, respectively with an annual Distribution of Regulating Coefficient of 0.19, 0.21, 0.23, and 0.24. The lowest Rate of runoff concentration was at Nodehkhandoz and Tamar stations respectively with 0.26% and 0.25%. The results also indicated a direct and significant relationship (R2 = 0.60) between Annual Distribution of Regulating Coefficient and Concentration Rate (p < .05). Ramian station had the highest Concentration Rate with a value of 0.62%. The highest significant decreasing and increasing trends, in Mann-Kendall test, were observed at Shirabad and Nodehkhandoz stations
Conclusions
According to the findings, there was a correlation between the annual distribution of regulating coefficient and the concentration rate. The higher values of the Annual Distribution of Regulating Coefficient and the Concentration Rate of runoff volume can be attributed to physiographic properties of watershed such as its slope, vegetation, and soil permeability. In other words, the process of changes in the runoff volume at these stations can indicate the temporal and spatial variations of precipitation, human protection measures such as dam construction in the basin, or the amount of permeability during the statistical period. In conclusion, with the non-uniform distribution of runoff volume in different months of the year, it can be expected that variations between the minimum and maximum values of runoff volume will also be high. Indeed, the higher the uniformity of the monthly distribution of runoff volume, the lower the variations between the minimum and maximum changes in the runoff volume. Variations in the amount of monthly runoff in the studied area can be related to the characteristics of the area, the hydrological response, and land use (agricultural land plowing season), as one of the main factors controlling runoff.

کلیدواژه‌ها [English]

  • Keywords: River flow regime
  • Concentration Rate
  • Annual Distribution of Regulating Coefficient monthly distribution
  • Mann-Kendall Test
منابع
ـ اسفندیاری‌درآباد، فریبا؛ بهشتی جاوید، ابراهیم و محمدحسین فتحی (1393)، ارزیابی آثار هیدرولوژیک تغییر کاربری بر میزان رواناب سالانه در حوضه­ی آبخیز قره‌سو با استفاده از مدل (L-THIA)، هیدروژئومورفولوژی، دوره­ی 1، شماره­ی 1، صص 73-59.
ـ اسفندیاری‌درآباد، فریبا؛ مصطفی‌زاده، رئوف و پیروزه فقه‌زاده (1395)، مقایسه­ی الگوی تغییرات زمانی مقادیر دبی و رسوب ماهانه در تعدادی از رودخانه‌های استان آذربایجان غربی، پژوهش‌های ژئومورفولوژی کمی، سال 5، شماره­ی 2، صص 65-53.
ـ باقرپور، مهسا؛ سیدیان، سیدمرتضی، فتح‌آبادی، ابوالحسن و امین محمدی (1396)، بررسی کارایی آزمون من- کندال در شناسایی روند سری‌های دارای خودهمبستگی، علوم و مهندسی آبخیزداری ایران، سال 11، شماره­ی 36، صص 22-11.
ـ صفری‌شاد، مهتاب؛ حبیب‌نژاد روشن، محمود؛ سلیمانی، کریم؛ ایلدرمی، علیرضا و حسین زینی‌وند (1396)، پتانسیل تأثیر تغییر اقلیم بر جریان رودخانه در حوضه­ی آبخیز همدان -بهار، هیدروژئومورفولوژی، دوره­ی 3، شماره­ی 10، صص 98-81.
ـ فرج‌زاده، منوچهر؛ رجایی نجف‌آبادی، سعید و یوسف قویدل رحیمی (1391)، آشکارسازی اثر نوسانات بارش بر رواناب سطحی حوضه­ی آبریز سرخس (کشف‌رود)، مطالعات جغرافیایی مناطق خشک، سال 2، شماره­ی 7، صص 24-11.
ـ فضل‌اولی، رامین؛ آخوندعلی، علی­محمد و عبدالکریم بهنیا (1385)، تعیین روابط پیش‌بینی رواناب در حوضه‌های آبریز کوهستانی (مطالعه­ی موردی: حوضه‌های آبریز معرف امامه وکسیلیان)، علوم کشاورزی و منابع‌طبیعی گرگان، صص 13-1.
ـ مصطفی‌زاده، رئوف، شهابی، معصومه، ذبیحی، محسن، (1394)، تحلیل خشکسالی هواشناسی در استان کردستان با استفاده از مدل نمودار سه‌متغیره، آمایش جغرافیایی فضا، جلد 5، شماره­ی 17، صص 140-129.
ـ مصطفی‌زاده، رئوف و شیخ واحد بردی (1390)، بررسی تراکم شبکه باران‌سنجی استان گلستان با استفاده از روش همبستگی مکانی، پژوهش‌های آبخیزداری، شماره­ی 93، صص 87-79.
ـ معروفی، صفر و حسین طبری (1390)، آشکارسازی روند تغییرات دبی رودخانه مارون با استفاده از روش‌های پارامتری و ناپارامتری، تحقیقات جغرافیایی، سال 26، شماره­ی 2، صص 146-125.
ـ منتظری، مجید (1395)، واکاوی آماری-همدیدی بارش رواناب در حوضه­ی بهشت‌آباد، هیدروژئومورفولوژی، دوره­ی 2، شماره­ی 6، صص 159-137.
ـ وفاخواه، مهدی، بخشی‌تیرگانی، محمد و مجید خزائی (1391)، تحلیلروندبارندگیودبیدرحوضه­ی‌آبخیزکشف‌رود، جغرافیا و توسعه، شماره­ی 29، صص 90-77.
ـ یوسفی، یداله؛ رورده، همت‌الله و سیدمحمود رضوی (1390)، تغییرپذیری زمانی و مکانی جریان رودهای استان مازندران، جغرافیا و آمایش سرزمین، سال 1، شماره­ی 2، صص 88-75.
-Altunkaynak, A., Özger, M., and Sen, Z., (2003), Triple diagram model of level fluctuation in Lake Van, Turkey. Hydrology and Earth System Sciences, 7(2): PP. 235-244.
-Cristiano, E., Veldhuis, M.C.T., and Giesen, N.V.D., (2017), Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrology and Earth System Sciences, 21: PP. 3859-3878.
-Kundzewicz, Z.W., Merz, B., Vorogushyn, S., Hartmann, H., Duethmann, D., Wortmann, M., Huang, Sh., Su, B., Jiang, T., and Krysanova, V., (2015), Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin, Environmental Earth Sciences, 73: PP. 501-516.
-Mwendera, E.J., and Mohamed-Saleem, M.A., (1997), In filtration rates, surface runoff,and soil loss as influenced by grazing pressue in the Ethiopian highlands, Soil Use and Management, 13: PP. 29-35.
-Onoz, B., and Bayazit, M., (2011), Block bootstrap for Mann-Kendall trend test of serially dependent data, Hydrological Processes, 26: PP. 3552-3560.
-Petersen, T., Devineni, N., and Sankarasubramanian, A., (2012), Seasonality of monthly runoff over the continental United States: Causality and relations to mean annual and mean monthly distributions of moisture and energy, Journal of Hydrology, 468-469: PP. 139-150.
-Sadeghi, S.H.R., and Mostafazadeh, R., (2016), Triple diagram models for changeability evaluation of precipitation and flow discharge for suspended sediment load in different time scales. Environmental Earth Sciences, 75(843): PP. 1-12.
-Salmi, T., Määttä, A., Anttila P., Ruoho-Airola, T., and Amnell, T., (2002), Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates-the Excel template application MAKESENS, Finnish Meteorological Institute, 31: 1-35.
-Shiklomanov, A.I., Lammers, R.B., Rawlins, M.A., Smith, L.C., and Pavelsky, T.M. (2007), Temporal and spatial variations in maximum river discharge from a new Russian data set, Geophysical Research, 112: PP. 1-14.
-Tuset, J., Vericat, D., and Batalla, R.J. (2016), Rainfall: runoff and sediment transport in a mediterranean mountainous catchment, Science of the Total Environment, 540: PP. 114-132.
-Walega, A., and Mlynski, D. (2017), Seasonality of median monthly discharge in selected carpathian rivers of the upper Vistula basin, Carpathian Journal of Earth and Environmental Sciences, 12(2): PP. 617-628.
-Xu, J., Yang, D., Yi, Y., Lei, Z., Chen, J., and Yang, W., (2008), Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years, Quaternary International, 186(1): PP. 32-42.
-Young, A.R., Round, C.E., and Gustard, A., (2000), Spatial and temporal variations in the occurrence of low flow events in the UK, Hydrology and Earth System Sciences, 4(1): PP. 35-45.
-Yu, X., Zhao, G., Zhao, W., Yan, T., and Yuan, X., (2017), Analysis of precipitation and drought data in Hexi Corridor, Northwest China, Hydrology, 4(29): PP. 1-12.
-Zhai, H.J., Hu, B., Luo, X.Y., Qiu, L., Tang, W.J., and Jiang, M., (2016), Spatial and temporal changes in runoff and sediment loads of the Lancang River over the last 50 years, Agricultural Water Management, PP. 1-8.