نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 University of Mohaghegh Ardabili, Ardabil, Iran

3 دانشگاه محقق اردبیلی

4 استادیار گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

5 دانش آموخته کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

6 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

چکیده

شاخص‌های بوم‌شناختی به ابزارهای مهمی برای ارزیابی و پایش منابع طبیعی تبدیل شده‌اند که درک رابطه بین فعالیت‌های زیست‌شناسی و واکنش بوم‌شناختی برای ساختار آن‌ها ضروری است. از طرفی، فعالیت‌های انسانی از طریق تغییرات در تولید رسوب، انتقال و ذخیره‌سازی تأثیرات قابل توجهی بر تکامل چشم‌انداز دارند. لذا این امر در مدیریت جامع‌نگر حوضه‌ها و اکوسیستم‌های مختلف بایستی مورد توجه قرار گیرد. بر همین اساس، پژوهش حاضر با هدف ارزیابی ناهمگونی فضایی شاخص آشفتگی هیدرورسوب‌شناسی (HSDI) در زیرحوضه‌های سامیان واقع در بخش مرکزی استان اردبیل انجام شد. بدین‌منظور، ابتدا عوامل انتقال رسوب (ST)، تنش هیدرولوژیکی (HS)، تغذیه آب زیرزمینی (Rec) و پتانسیل فرسایش خاک (SEP) برای 27 زیرحوضه مختلف مورد مطالعه محاسبه شد. در ادامه، وزن‌دهی این عوامل با استفاده از روش آنتروپی شانون صورت گرفت. سپس با استفاده از میانگین وزنی شاخص آشفتگی هیدرورسوب‌شناسی (HSDI) محاسبه و پهنه‌بندی شد. نتایج نشان داد که مقادیر متوسط، حداکثر و حداقل مقدار شاخص HSDI در حوضه سامیان به‌ترتیب برابر 17/10، 67/45 و 20/0 بوده است. هم‌چنین، طبق نتایج به‌ترتیب 67/87، 33/5، 32/5 و 68/1 درصد از مساحت حوضه در طبقات خیلی‌کم، کم، متوسط و زیاد از سطح آشفتگی دسته‌بندی شد. زیرحوضه 19 واقع در بخش شمالی، و زیرحوضه‌های 20 و 21 واقع در بخش مرکزی حوضه سامیان دارای بیش‌ترین آشفتگی هستند، لذا برای انجام اقدامات مدیریتی در اولویت قرار می‌گیرند. چارچوب پژوهش حاضر به‌عنوان ابزاری بالقوه برای حمایت از تصمیماتی که باید بر بهبود مدیریت منابع طبیعی متمرکز باشد، قابلیت کاربرد دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Spatial Heterogeneity of Hydro-sedimentological Disturbance Index in the Samian sub-watersheds

نویسندگان [English]

  • Vahideh Moradzadeh 1
  • Zeinab Hazbavi 2
  • Abazar Esmali Ouri 3
  • Raoof Mostafazadeh 4
  • Shirin Zarei 5
  • Nazila Alaei 6

1 MSc Student, Watershed Management Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 University of Mohaghegh Ardabili, Ardabil, Iran

3 Dept. Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

4 Assist. Prof., Natural Resources Dept., Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

5 Former MSc Student, Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

6 PhD student in Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

چکیده [English]

Ecological indicators have become important tools for evaluating and monitoring natural resources. Understanding the relationship between biological activities and ecological interactions is essential to their structure. On the other hand, human activities have significant effects on landscape evolution through changes in sediment production, transport, and storage. Therefore, this issue should be considered in the comprehensive management of different watersheds and ecosystems. Accordingly, the present study was conducted to evaluate the spatial heterogeneity of the hydro-sedimentologic disturbance index (HSDI) in the watershed located in the central part of Ardabil province. For this purpose, sediment transport (ST), hydrological stress (HS), recharge potential of groundwater (Rec), and soil erosion potential (SEP) were first calculated for 27 different sub-watersheds. Then, these factors were weighted using the Shannon entropy method. The hydro-sedimentologic disturbance index (HSDI) was calculated and zoned using the weighted average. The results showed that the mean, maximum and minimum values of the HSDI index in the Samian watershed were 10.17, 45.67, and 0.20, respectively. In addition, 87.67, 5.33, 5.32, and 1.68% of the watershed area were classified into very low, low, medium, and high levels of disturbances, respectively. Sub-watershed 19 located in the northern part, and sub-watersheds 20 and 21 located in the central part of the Samian watershed have the most disturbances, so they are prioritized for management actions. The present research framework can be used as a potential tool to support decisions that should focus on improving natural resource management.

کلیدواژه‌ها [English]

  • Human Management
  • Hydrological regime
  • Samian
  • Sediment yield
  • Water resources management
  • Samian Sub-Watersheds
Asgari, E., Hosseini, S.Z., & Mostafazadeh, R. (2021). Determination of the Relationship and Spatial Variations of Discharge and Suspended Sediment Values in Watersheds of Ardabil Province, Geography and Development Iranian Journal, 18(61), 143-176.‏
Esmali, A., & Abdollahi, Kh. (2011). Watershed Management and Soil Conservation. University Mohaghegh Ardabili Press. 574 p.
Farajzadeh, Asl, M., Hodaei, A., Mollashahi, M., & Rajabi Rostam Abadi, N. (2017). The Analysis and Comparison of the Suspended Sediment in the Caspian Sea and Central Iran Drainage Basins, Hydrogeomorphology, 4(11), 59-81.
Ghoreishi Gharetikan, S., Gharechelou, S., Mahjoobi, E., Golian, S., & Salehi, H. (2022). Evaluation of Available Surface Water Resources in Qarah Tikan Border Basin using Satellite Products and GIS, Water and Soil Management and Modelling, 2(1), 1-13.
Golshan, M., Kavian, A., Esmali, A., & Ziegler, A. (2018). Modeling Runoff and Sediment Yield using of Hydro-Geomorphologic Characters in Samian Watershed, Ardabil Province, Iranian Journal of Watershed Management Science and Engineering, 12(43), 117-126.‏
Jafari, T., Naemi, M., & Zakerian, (2018). Quantitative Assessment of Soil-Water Erosion with the EPM Model (Case Study: Badranloo Watershed), Geography and Environmental Planning, 29(2): 141-158.
Kamangar, M., & Ghaderi, F. (2016). Investigating the Accuracy of Shannon Entropy Weighting Method in Determining the Appropriate Areas of Artificial Nutrition in Sarkhon plain, Iranian Soil and Water Research, 47 (2): 247-258.
Mehri, S., Mostafazadeh, R., Esmali-Ouri, A., & Ghorbani, A. (2017). Spatial and Temporal Variations of Base Flow Index (BFI) for the Ardabil Province River, Iran, Earth and Space Physics, 43(3): 623-634.
Mirsanjari, M.M., & Abedian, S (2019). Assessment and Environmental Zoning of Soil Erosion Potential using RUSLE Model (Case Study: Gharahsoo watershed), Journal of Environmental Studies, 44(4), 625-642. 
Nayyeri, H., Amani, K., & Ganjaeian, H. (2016). Survey the Tarval Drainage Watershed Hydro Geomorphology and Hydrology Indicators, Hydrogeomorphology, 3(7), 19-38.
 Refahi, H.G. (1385). Wind Erosion and Conservation. University of Tehran Press, 561 p.
Rezaie, H., Garebaghi, P., Khani Temeliyeh, Z., & Mirabbasi-Najafabadi, R. (2022). Monthly Flow Analysis of Sefidrood River using Chaos Theory, Water and Soil Management and Modelling, 2(1), 27-41.
Saeediyan, H., & Moradi, H. (2022). Comparing of the Runoff and Sediment of Different Land Uses in Gachsaran and Aghajari Formations under Rain Simulation, Water and Soil Management and Modelling, 2(2), 55-68.
Zarei, Sh., Hazbavi, Z., Mostafazadeh, R., & Esmali-Ouri, A. (2020). Vulnerability Comparison of Samian Sub-watersheds based on Climate Change Components, Natural Geography Research, 52(2), 217-236.
Alcázar, J., Woodard, P.M., & Rothwell, R.L. (2002). Soil Disturbance and the Potential for Erosion after Mechanical Site Preparation, Northern Journal of Applied Forestry, 19(1), 5-13.
Averill, R. D., Larson, L., Saveland, J., Wargo, P., Williams, J., & Bellinger, M. (1994). Disturbance Processes and Ecosystem Management. Washington, DC: U.S. Department of Agriculture, Forest Service. 19 p.
Biggs, B.J., Tuchman, N.C., Lowe, R.L., & Stevenson, R.J. (1999). Resource Stress Alters Hydrological Disturbance Effects in a Stream Periphyton Community, Oikos, 95-108.‏
Dai, J.J., Lorenzato, S., & Rocke, D.M. (2004). A Knowledge-Based Model of Watershed Assessment for Sediment, Environmental Modelling & Software, 19(4), 423-433.‏
Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Römer, A., Terrail, R., & Arseneault, D. (2019). Stronger Influence of Anthropogenic Disturbance than Climate Change on Century-Scale Compositional Changes in Northern Forests, Nature Communications, 10(1), 1-7.‏
de Barros, C.A.P., Minella, J.P.G., Dalbianco, L., & Ramon, R. (2014). Description of Hydrological and Erosion Processes Determined by Applying the LISEM Model in a Rural Catchment in Southern Brazil, Journal of Soils and Sediments, 14(7), 1298-1310.‏
Durães, M.F., & Mello, C.R.D. (2014). Hydrosedimentologic Disturbance Index Applied to Watersheds of Minas Gerais State, Ciência e Agrotecnologia, 38, 61-67.‏
Folster, H., Khanna, P.K., Nambiar, E.K.S., & Brown, A.G. (1997). Dynamics of nutrient supply in plantation soils. P. 339-378 in Management of soil, nutrients and water in tropical plantation forests, Nambiar, E.K.S. (ed.). Aciar Monogr. No. 43. Canberra, Australia.
Guiraud, D.M.C., Lenzi, E., Luchese, E.B., & Fávero, L.O.B. (2004), Loss of Macronutrients (N, P, K) in the Hydrographic Basin of the River Ivaí, an Affluent of the River Paraná. Brazilian Archives of Biology and Technology, 47, 649-658.
Humphries, H.C., Bourgeron, P.S., & Reynolds, K.M. (2008). Suitability for Conservation as a Criterion in Regional Conservation Network Selection. Biodiversity and Conservation, 17(3), 467-492.‏
Huston, A. (1994). The Coexistence of Species on Changing Landscapes. Page Biological Diversity, 483-557.‏
Kemp, D., Sadler, P., & Vanacker, V. (2020). The Human Impact on North American Erosion, Sediment Transfer, and Storage in a Geologic Context, Nature Communications, 11, 6012.
Margules, C.R. & Pressey, R.L. (2000). Systematic Conservation Planning. Nature, 405(6801):243-253.
Margules, C.R. & Sarkar, S. (2007). Systematic Conservation Planning. Cambridge: Cambridge University Press, 278 p.
Marques, P.H.C., Oliveira, H.T., & Machado, E.C. (2003), Limnological Study of Piraquara River (Upper Iguaçu Basin): Spatiotemporal Variation of Physical and Chemical Variables and Watershed Zoning. Brazilian Archives of Biology and Technology, 46, 383–394.
Moon, D.E. (1988). Approaches to predicting soil degradation. P. 138–152 in Proc. of the 10th B.C. Soil Science Workshop, B.C. Min. For. Victoria, B.C., Canada
Nelson, E.J, &. Booth, D.B. (2002). Sediment Sources in an Urbanizing, Mxed Land-use Watershed. Journal of Hydrology, 264, 51–68.
Netto, S. A., & Lana, P. (1994). Effects of sediment disturbance on the structure of benthic fauna in a subtropical tidal creek of southeastern Brazil. Marine Ecology-Progress Series, 106, 239-239.‏
Peterson, C.G. (1996). Response of Benthic Algal Communities to Natural Physical Disturbance. In: Stevenson, R.J., Bothwell, M. L. and Lowe, R. L. (eds), Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, CA, pp. 375-402.
Picket, S.T.A., & White, P.S. (1985). The Ecology of Natural Disturbance as Patch Dynamics, New York: Academic Press INC, 470p.
Schmidt, M.G., Macdonald, S.E., & Rothwell, R.L. (1996). Impacts of Harvesting and Mechanical Site Preparation on Soil Chemical Properties of Mixed-Wood Boreal Forest Sites in Alberta. Canadian Journal of Soil Science, 76, 531–540.
Shannon, C.E. (1948). A mathematical theory of communication, Bell System Technical Journal, 27(3), 379-423.
Silva, A.M.D., & Schulz, H.E. (2007). Hydrosedimentological dynamic on Água Fria watershed. Brazilian Archives of Biology and Technology, 50, 861-870.
Silva, M.A.L., Calasans, C.F., Ovalle, A.R.C., & Rezende, C.E. (2001). Dissolved nitrogen and phosphorus dynamics in the lower portion of the Paraíba do Sul River, Campos dos Goytacazes, R.J, Brazilian Archives of Biology and Technology, 44, 365–371.
Tucci, C.E.M. (1997). Hidrologia: Ciência. E Aplicação. Editora da Universidade/ABRH, Porto. Alegre, R.S. 450p (Abstract in English).
Turner, M.G. (1989). Landscape Ecology: the Effect of pattern on process. Annual Review of Ecology and Systematics, 20:171-197.
Turner, M.G., & Gardner, R.H. (2015). Landscape ecology in theory and practice: pattern and process. Springer.
Vieira, P.M.S., & Studart, T.M.C. (2009). Proposta metodológica para o desenvolvimento de um índice de sustentabilidade hidro-ambiental de áreas serranas no semiárido brasileiro – estudo de caso: Maciço de Baturité, Ceará. Revista Brasileira de Recursos Hídricos, 14(4), 125-136 (Abstract in English).
Zanandrea, F., Michel, G.P., Kobiyama, M., Censi, G., Abatti, B.H. (2021). Spatial-Temporal Assessment of Water and Sediment Connectivity through a Modified Connectivity Index in a Subtropical Mountainous Catchment. Catena, 204, 105380.‏